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To demonstrate the dangers of neglecting the transient characteristics of
frequency modulation in linear parametrically excited systems a model equation
with variable frequency that includes components of transient behavior is
investigated. The transient components of the frequency modulation decay
periodically and asymptotically with time leading to a periodic closed cycle form.
The exact analytical solution of the model equation is derived for the first time in
the present work by introducing a transformation that maps the original model into
a system of two solvable equations. The extensive investigation of the general
solution and its components demonstrates that the transient characteristics of the
frequency variation cannot be ignored. In fact cases where theses characteristics
can result in bounded or unbounded response of the system are presented. In
general transient frequency characteristics continue to drastically affect the
structure and the amplitude of the general solution long after they become
indistinguishable in the frequency modulation. Numerical solutions of the model
equation are also presented to further support the conclusions made in this paper.

INTRODUCTION

The investigation of parametrically excited and self-excited systems with transient
characteristics has many important applications in Engineering. For example, rotating
structures, like bladed disks in air engines, are driven by oscillating forces with variant
frequencies of their harmonics during transient operation (see reference [1] for example).
Another application of such models is the variable-mass rotor fluid systems. This problem is
modeled by a parametrically excited system with transient frequency features [2–4].
Moreover, transient vibration due to blade loss can also be modeled by self-excited systems
with transient frequency modulation [5]. However, most of the theoretical investigations of
the previously mentioned systems focus on non-linear models. It is generally thought that the
likely source of unpleasant surprises in such systems comes from modal interaction due to
coupling between closely spaced modes of the nonlinear model [6]. As such approaches like
the Krylov-Bogolijbov asymptotic approaches [7] or the method of harmonic balances [8, 9]
are widely used to analyze such systems. Numerically, on the other hand, the modal
decomposition analysis is a common approach in theoretical investigation [10].

For example Irretier and Balashov [11] and Irrtier and Leul [12] analyzed transient
oscillation of weakly non-linear systems with slow variable frequency. They mainly focused
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on sweeping through resonance frequency of such systems. On the other hand, Asfar [13]
used the method of multiple scales to investigate the quenching of self excited vibrations. In
linear systems, however, transient variation of the frequency did not grasp as much attention
especially if the steady state response is only considered. Although not many linear
parametrically excited model equations have know analytical solution, those that have do not
demonstrate the effect of their transient characteristics on the magnitude or the structure of the
solution [14]. Antone and Al-Maaitah [15] expanded the classes of the solvable linear second-
order differential equations with variable coefficients but they did not investigate problems
with transient characteristics similar to the one considered in this work.

To demonstrate the dangers of such mistake in dealing with transient vibration problem a
linear parametrically excited model equation with variable frequency is considered in the
present work. The exact analytical solution of this model equation is then presented. Although
the steady state behavior of the frequency converges to a periodical form, which contains no
distinguishable transient characteristics, the influence of these characteristics has drastic
influence on the steady state solution regardless of the delay in the switch-on time.

MATHEMATICAL MODEL

The general form of linear differential equations that describe non-damped self-excited
systems is given by:

0)( =+ yty ω ,

where )(tω  is the time varying frequency. For the basic Mathieu’s equation )(tω  is strictly
periodic.

Nonetheless, in many engineering applications )(tω  has transient features before it
symptomatically converges to a periodic form. In the present work the model described by the
following equation is considered:
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where y and 22 dtyd  correspond to the non-dimensional displacement and the non-
dimensional acceleration respectively, m is a constant parameter representing certain
characteristics of the transient behavior in frequency modulation, and t is the time.

It is clear that eqn. (1) is non-singular for t>0. In the present model, the frequency
modulation has periodic components as represented by the first two terms between the curly
brackets and transient decaying components as represented by the third and fourth terms
between the curly brackets. The third term decays in a periodic fashion while the fourth term
decays continuously.

The parameter m affects the rabidity of decaying of transient frequency components. It also
affects the amplitude of the initial shock in the frequency modulation. For m=0 the frequency
is always periodic. Figure 1 shows the variation of )(tω  with time for different values of m.
To demonstrate the convergence of the frequency to a periodic form fig. 2 shows the
Poincaret map of the frequency modulation for positive and negative values of m. It is clear
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that the steady state form of the frequency converges to a close cycle periodic form. One
should keep that in mind while investigating the solution of the model equation.

THE ANALYTICAL SOLUTION

Antone and Al-Maaitah [15] introduced many classes of solvable linear second order
differential equation with variable frequency. However, the model equation considered in the
present work is not directly related to their work or any previous work in the area (see
Takoyama [14]). Nonetheless, the solution procedure presented here for the model equation
(1) is inspired from the methods proposed in such works. As such, consider the following
transformation

tey cosΨ= . (2)
Then

tt ete
dt
d

dt
dy coscos sin Ψ−Ψ= (3)

and
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Substituting equations (2) and (4) into equation (1), rearranging, and factoring out the term
tecos  we obtain the following equation:
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Equating the coefficients of ( )1sin t  and ( )0sin t  to zero, the following equations can be
obtained

0=Ψ−Ψ
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dt
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and

0)1(
22

2

=Ψ−−Ψ
t
mm

dt
d

. (7)

A solution to both equations is
mt=Ψ . (8)

Consequently, equation (8) is a solution of equation (5). This would finally lead to a
solution of equation (1) as follows

tmety cos
1 = . (9)
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However the general solution of (1) is in the form

2211 yCyCy += , (10)

where 1C  and 2C  are arbitrary constants, 2y  is a second solution which is linearly

independent of 1y . In general 2y  can be constructed as follows( see reference [16])
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where 0t >0 is the initial time at which the system is switched on (the time when initial
conditions are applied).

The initial conditions of equation (1) are:

00 )( yty = , (12)

000 )( vyt
dt
dy == , (13)

where 0y  and 0v  are the initial displacement and velocity, respectively.
From equations (9), (10), (12), and (13) the following expression for the constants 1C  and

2C  can be derived

0cos
0

0
1 tmet

yC = , (14)

00 cos
0

1
00

cos
002 )sin( tmmtm etmtyetyC −−= − . (15)

Of course, either 1C  or 2C  can be set to zero by choosing the appropriate initial conditions.
It should be also noted that although 1y  is defined in an analytical close from 2y  is not.

Nonetheless, the integral in 2y  can be evaluated numerically with sufficient accuracy to be
considered as quasi-analytical. The physical characteristics of the solution to equation (1) are
discussed below.

RESULTS AND DISCUSSION

The model equation (1) was chosen for two main reasons. The first is that it simulates
certain cases of engineering application with many interesting features demonstrating the
drastic effect of transient frequency modulation on the steady state response of the system.
The second reason is that an analytical solution of that model can be found leading to clear
and easy investigation of its characteristics.

As it is discussed earlier the transient features of frequency modulation decay completely
after a certain period of time depending on the value of m. It is demonstrated that transient
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behavior of ω  is indistinguishable as t>20 for the cases of 1.0−=m , 0, and +0.1 (please refer
to figures 1 and 2). However, the transient behavior of ω results in a drastic effect on the
system’s response as the analytical solution of equation (1) illustrates.

Equation (9) clearly demonstrate that the first component of the solution ( 1y ) is
periodically growing when m>0 and periodically decaying when m<0, while it is strictly
periodic when m=0. Figures 3 and 4 show the behavior of 1y  for various values of negative
and positive m. When m=0 the first component of the solution 1y  has a limit cycle of an

amplitude around 2.75. On the other hand 1y  reaches a value of 8⋅1011 at 200≈t  when m=5.
For negative values of m the first component of the solution decays with time in a rate
depending on the value of m as shown in figures 4.b–4.c.

It should be noted that although the discussion above is only for one component of the
solution it could be the sole component of the general solution of the model if the right initial
conditions are chosen. From equations (10) and (15) the general solution becomes equal to
( 11 yC ) if the initial velocity is chosen to be







−= 0

0
00 sin t

t
myy . (16)

In other words, the initial velocity is chosen such that 2C  in equation (10) is identically
zero. In this case, the transient effect of the frequency modulation can directly lead to
bounded or unbounded response of linear self-excited systems depending on the sign of the
component m. It is worthwhile to remember that the effect of m on the frequency modulation
vanishes with time.

In general, however, there are tow components of the solution to equation (1). The second
solution to this equation, 2y , can be found using equation (11) noting that the integration in

this equation can be done numerically with great accuracy. Although 1y  is bounded when
m=0, figure 5.a shows that 2y  is growing since the value in the integrand is always positive.

Figures 5.a–5.d show the variation of 2y  with time in for different values of positive m. At

200≈t  the amplitude of 2y  reached 12⋅1018 when m=5 while it only reached 900 when

m=0.1 at the same time. For negative values of m, on the other hand, figures 6.a–6.d show 2y
as function of time.

Although the general solution is always unbounded if 02 =C , the effect of m on the
structure and the (order of) magnitude of that general solution is drastic. This is quite
important especially since such growth might have dangerous effect in triggering non-
linearity in the physical problem. As such, samples of the total general solution of equation
(1) are presented by choosing arbitrary initial conditions that do not quench any of the two
components of the general solution. Here, the initial conditions are chosen to be

1.0)1.0()1.0( 00 == yy .
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Both 1C  and 2C  are then calculated and the general solution is then found from equation
(10). For m=0 the general solution is always growing as shown in figure 7 and its amplitude
reaches 350 at 200≈t . For m=0.1. However, the amplitude of the total solution is much less
than that when m=0 as shown in figure 8.a.  For 1.0−=m  the amplitude of the solution
reaches to 1200 at 200≈t  as shown in figure 8.b while figure 9 shows a comparison of the
general solution of y for 0.1±=m . It can be noted that not only the amplitude of the solution
is at a much lower scale of amplitude for 1.0+=m  as compared to that when 1.0−=m , but
also y is always negative when 0.1+=m  while it is always positive when 0.1−=m . This
means that the transient characteristics of the frequency modulation affect the structure of the
response as well as its amplitude. For the cases of 0.5±=m  the general solution is shown in
figure 10. The drastic effect of the transient behavior of the frequency variation on the
response of the modelled self-excited system is clearly demonstrated in the discussion above.

NUMERICAL SOLUTION

The full numerical solution of equation (1) is presented here for two reasons. The first is to
compare the numerical solution with the quasi-analytical solution derived in this work. The
second reason is to demonstrate the dangers of neglecting the transient behavior of the
frequency modulation on the steady state solution of parametrically excited systems. Equation
(1) is then solved using a fourth-order Runge-Kutta technique with a step size in time of 0.01.
Figure 11 shows the numerical solution of equation (1) when m=0 and the same initial
conditions of figure 7. The numerical solution completely matches the analytical solution. In
fact all the analytical solutions found in figures 8 and 9 were also reproduced numerically
with perfect match.

An interesting case is that when the initial conditions are chosen to eliminate the growing
solution y2 from the general solution. When 1.0−=m  the analytical solution is only a
decaying one. However, the accumulation of the numerical error in the numerical solution
combined with the numerical inaccuracy of the initial conditions would trigger 2y  to grow
again in the numerical solution. This is demonstrated in figure 12, which shows the decaying
of the response for a certain period of time after which the numerical response starts to grow
again. The initial conditions in figure 12 are applied at (t=100). At this time the transient
modulation of the frequency can be considered as non-existing. For these conditions one
might mistakenly think that equation (1) can be approximated by the following equation after
neglecting the transient components of the frequency variation

0}sin{cos 2
2

2

=−+ ytt
dt

yd
. (17)

The analytical solution of eqn. (17) can be found by setting m=0 while the general
analytical solution of equation (1) under these initial conditions is simply ( 1.0cos

1 teC t ). As
can be shown from the discussion above these two solutions are completely different.
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CONCLUSION

A certain model equation of linear parametrically excited system is chosen and the
analytical solution of this equation is derived for the first time. Both the analytical and the
numerical solutions of the chosen model equation demonstrate the drastic effect of the
transient frequency modulation on the long term solution of such systems. It is misleading to
assume that if some characteristics of the frequency variation vanish with time then the effect
of these characteristics on the system’s response can be neglected. In other words, the
transient characteristics of frequency modulation have a non-transient effect that might
drastically affect the response both the structure and the amplitude of the solution.
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Fig. 1. Time varying frequency for different values of m
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Fig. 2. Poincaret map of frequency modulation for m=± 0.1
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Fig. 3. 1y  for various m

Fig. 4. 1y  for various m
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Fig. 5. 2y  for various m

Fig. 6. 2y  for various m
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Fig. 7. The total analytical solution for  m = 0 and the initial conditions
1.0)1.0(')1.0( 00 == yy

Fig. 8. The total analytical solution for  m =± 0.1 and the initial conditions
1.0)1.0(')1.0( 00 == yy
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Fig. 9. The total analytical solution for  m =± 1.0 and the initial conditions
1.0)1.0(')1.0( 00 == yy
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Fig. 10. The total analytical solution for  m =± 5.0 and the initial conditions
1.0)1.0(')1.0( 00 == yy
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Fig. 11. The numerical solution for  m = 0 and the initial conditions 1.0)1.0(')1.0( 00 == yy
using a highly accurate numerical schemes

Fig. 12. The numerical solution for  m = 0 and the initial conditions 1.0)1.0(')1.0( 00 == yy
using fourth-order Runge-Kutta technique in MATLAB


