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This work investigates out of plane vibration of a Y-shaped tube conveying fluid 
with clamed ends conditions. The mathematical model is based on the equation of 
motion of each tube coupled with matched boundary conditions at the junction of 
the three segments. The resulting equations are then resolved using Galerkin 
approach. The resulting eigen-values, eigen-function and shape modes are found 
numerically. A stability analysis of the solution is then performed. The effect of 
geometrical and flow parameters on the vibration of the Y-shaped tube conveying 
fluid is investigated. Results show that for small length of branching side compared 
to the supplying tube and for zero branching angle then the first three non-
dimensional frequency is close to those of straight single tube with clamped-
clamped conditions. Moreover, neutral stability regions were observed in first, 
second, and third modes for large range of dimensionless flow velocity. Results 
further demonstrate that an increase in dimensionless flow velocity results in 
decreasing of the non-dimensional frequency for the first three modes. Effect of 
branching angle and geometrical configuration on the mode shape and frequency is 
also investigated.  

1. INTRODUCTION 

The most common usage of pipes is to convey fluids. As such the study of the dynamics of 
tubes conveying fluid has many practical Engineering applications that include heat 
exchangers, automatic control, hydraulic lines, power lines, and aircraft lines. Moreover, the 
respiratory system in human bodies is regarded as an important application of such systems. 
On the other hand, the analysis of pipes conveying fluid has important theoretical application 
since they represent good models for gyroscopic systems weather linear of non-linear. In 
general, the existence of Coriolis forces in such systems categorize them as non-conservative, 
which results in the distortion of the mode, shapes.  Furthermore, pipes conveying fluids are 
generally categorized as self-excited system and suffer from instability problems at certain 
conditions.  

Consequently, such interesting problem was studied since the middle of the previous 
century. In fact, Ashly and Haviland [1] were the first to attempt to describe the vibration in 
the Trans Arabia pipelines. However, their formulation of the problem was erroneous as 
demonstrated by Housner [2] who derived the correct equation of motion for a tube conveying 
fluid and analyzed the case of simply supported tube at both ends. The cantilever case was 
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first studied by Benjamin [3] as a limiting case of articulated pipes conveying fluids. 
Theoretically, Gregory & Paidoussis [4], investigated the same problem of Benjamin [3] 
while assuming that the gravity forces are inoperative. After that many outstanding researches 
on the subject was conducted some of them are listed below. 

Paidoussis and Sundarajan [5], used two methods to analyze the parametric and 
combination resonance of pipes conveying fluids. Lundgren et al. [6] made theoretical and 
experimental study of self-induced non-parallel vibration of a flexible tube conveying fluids. 
They considered a tube fixed from one end while the flow is ejected at an angle from the free 
end. Paidoussis [7] reviewed the state of art of  two classes of vibrating systems namely the 
vibration of cylindrical tubes induced by cross-flow an by axial flow while earlier Hunnoyer 
& Paidoussis [8] put forward the general theory for dynamics of slender non-uniform axi-
symmetric beams subjected to internal of external flow or both simultaneously. 

An important work was presented by Silva [9] when a variational formulation followed by 
Galerkin approximation is applied to a simply supported cantilever pipes. In this work lumped 
ad rotational inertia were introduced resulting in a substantial modification the magnitude of 
the frequency. Moreover, the influence of eccentricity is found to be of greater importance 
then that of mass for constant eccentricity factor. Also the work emphasize the need of 
ensuring research on coupled out-of-plane bending and twisting of the beam. Gorman [10] 
developed an analytical solution for the in-plane and out-of-plane vibration of the U-tube. He 
developed the required interface boundary conditions in details.  

Nonlinear effects are quite important, Namchivaga [11] examined the nonlinear behavior 
of supported pipes conveying fluids in the vicinity of sub-harmonic resonance. The method of 
averaging is used to yield a set of autonomous equations when the parametric excitation 
frequency is twice the natural frequency of the system. Numerical procedure for the 
dynamical stability of pipes conveying fluid is introduced by Dang [12]. Furthermore, Aithai 
and Steven [13] investigated internal damping effect on the vibration of curved tubes. They 
proposed the model and investigated the stability of the system. 

Going through all the previous researches there was no work on the vibration of Y-shaped 
tubes conveying fluid. This problem is of great practical importance to Engineering 
applications where the flow is branched into tow directions. Clearly this system is also quite 
important to medical field since it resembles the flow direction in the human respiratory 
system. The present work is based on Euler beam theory for out-of-plane vibration of such 
pipes. The global effect of structure-structure and structure-fluid interaction on vibration and 
instability is investigated. 

2. PROBLEM FORMULATION 

In this section the problem of out-of-plane vibration of a Y-shaped tube conveying fluid is 
formulated. The main goal is to study the effect of the branching angle, length ratio, fluid 
velocity, and mass ratio on the vibration characteristics of such tubes. 
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2.1. EQUATIONS OF MOTION 

Figure 1 demonstrates the general system of a Y-shaped tube under consideration. The 
three ends are clamed to the corresponding walls as shown in the figure. For simplicity three 
coordinate systems are chosen coinciding with each of the three segments of the tube. These 
coordinates are illustrated in Figure 2 where ),( 11 tXY  describes the out of plane deflection of 

the first segment while ),( 3,23,2 tXY  represent the out of plane deflection of the other two 

branched segments. Here 1X , 2X , and 3X  are along the three span segments in the direction 

of the flow; 1X  begins from the wall upstream of the junction and ends at the junction, while 

2X  and 3X  begin from the junction and end at the clamped ends of each segment. In the 
present work the equation of motion of each segment is formulated separately and then the 
segment are coupled through the boundary conditions at the junction by insuring the 
continuity of displacement, slopes, bending moments, and shear forces.  

 
Figure 1. Y-shaped tube conveying fluid Figure 2. Bending Mom

near jun
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Where l1 is the length of the first signet and l2 is the length of the second segment. 
Noting that 

Lll =+ 21  (12) 

and 

0.121 =+ RLRL . (13) 

For similarly branched tubes 

32 ll = .  

The equation of motion in non-dimensional form for each segment then be comes: 
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Seeking the Galerkin solution for the PDE in the form 

)exp()(),( ωτξϕτξη jiiii = , (15) 

where the index i = (1, 2, 3) corresponds to the three segments, respectively, and 1−=j . 
Substituting the Galerkin solution into equation (14), which represents the governing 

equation of each segment the following ordinary differential equation, is obtained 
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where ω  is the dimensionless frequency of the tube related to the circular frequency of 
motion as mentioned in equation (8). 

Equation (16) represent three fourth-order ordinary differential equation with constant 
coefficient governing the motion of each segment of the pipe. These equations are coupled at 
the boundary conditions as it is explained later. However, the form of the solution can be 
discussed at an early stage even before discussing the boundaries. Actually the general 
solution to equations (16) is in the form 
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)exp( 1,3
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where the k index corresponds to the number of roots of each equation (noting that each of 
equations (16) has four roots). 

Substituting equations (17)–(19) in equation (16) results in the following characteristics 
equation(s): 
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In fact equation (20) represent the root of three equations; for 1=i , 4,,1=k , for 2=i  
8,,5=k , and for 3=i , 12,,9=k . To simplify the problem further one can consider the 

case where the pressure and the tension are negligible since they are not the focus of the 
present discussion. Furthermore, noting that for our case 21 =U , UU =2 , 2/32 UUU ==  
then equation(s) (20) can be written for the main branch as 
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While for the two other branches 
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Since equation (23) is the same as that of (22) there are actually eight distinct values of α . 
In general the frequency is a function of U  and β . Through the coupling at the junction 
boundary conditions and by specifying the problem’s configuration the characteristics of the 
Y-shaped tube vibration can then be determined as it is demonstrated below. 

2.2. BOUNDARY CONDITIONS 

The complete solution of the system requires 12 boundary conditions to be satisfied. For 
clapped ends case the following boundary conditions are to be imposed at the three walls to 
fulfill the requirements of the continuity of displacements slopes, bending moments and shear 
forces at the rigid junctions and their clamped ends. For zero slopes and deflection at the ends 
the following boundary conditions are used: 

0)0(1 =Y , (24)  0)0(1 =′Y , (25) 

0)( 22 =lY , (26)  0)( 22 =′ lY , (27) 

0)( 23 =lY , (28)  0)( 23 =′ lY . (29) 

Nonetheless, at the junction the following boundary conditions can be utilized to as shown 
in figure 2. 

The continuity of lateral deflection 
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)0()( 211 YlY = , (30) 
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To insure continuity of slopes projection between the three segments 
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and 
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To balance the bending moment 
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To balance the shear forces 
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Substituting the dimensionless for of iY  and taking into consideration equations (15) and 
(17)–(19) the boundary conditions (24)–(35) can be put in the following form: 

Equations (36)–(47) represent a system of 12 linear equations that can be put in the form: 
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[ ] [ ] 0=⋅ icD , (48) 

where the matrix [ ]D  is 12×12 complex matrix. 
For equation (48) to have a non-trivial solution then  

[ ] 0),,,( 2,2,11 == θαα RLfDDet ii . (49) 

Equation (49) is coupled  with equations (21) and (22) to from the dispersion relation for 
the system. The system is then resolved numerically as explained below. 

3. NUMERICAL PROCEDURE 

Equations (21), (22), and (49) form a set of three nonlinear complex algebraic equations 
which are resolved numerically to find the values of ω , i1α , and i2α  for certain values of U , 

β , θ , and 2RL . A numerical iteration scheme is set to conduct such calculation by first 
assuming a certain value of ω  to find the four corresponding roots of i1α , and i2α  from 
equations (21) and (22) using Bairstow’s method [14]. These roots are two real pair and tow 
complex conjugate pairs. The error in the polynomials is found to be in the order of 10-15. The 
resulting values of i1α , and i2α  are then substituted in equation (49) where an LU 

factorization scheme is utilized to fined the determinants of [ ]D  via the IMSL subroutine 
DLFDCG [15]. A sweeping search is then conducting bay repeating the process until the sign 
of the determinant of [ ]D  changes after-which a bisection method is used to converge for the 
desired accuracy of ω . Once ω  is found then the Eigen Functions can be calculated from 
equations (48) utilizing the IMSL subroutine DLSACG [15]. The entire procedure is the 
repeated for any values of U , β , θ , and 2RL . 

4. RESULTS AND DISCUSSION 

Since there are no previous results to compare with the present calculations are checked by 
comparing it to the results of a clamped-clamped straight tube case. For the Y-shaped tube to 
be similar to the straight tube case θ  should be zero and 2RL  should be as small as possible. 
Nonetheless, 2RL  cannot be too small for the Euler beam theory to be valid. As such, 2RL  is 
chosen to be 0.1, β  to be 0.2 and the resulting calculation of the non-dimensional frequency 
is demonstrated in figures 3–4. The effect of the dimensionless flow velocity on the first-
mode frequency is shown in figure 3 for zero θ  and is compared to the straight tube case. The 
comparison is quite acceptable taking into consideration that the slight increase in ω  is due to 
the slight increase in the stiffness due to the branching at 9.01 =RL . Similar argument can be 
said about the second and the third modes of vibration as shown in figures 4 and 5, 
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respectively. For large enough values of U  neutral stability points are reached as shown in 
figures 3–5. 
 

 

Figure 3. Comparison to straight pipe. 
First mode, 2.02 =RL , 0=θ  

 

Figure 4. Comparison to straight pipe. 
Second mode, 2.02 =RL , 0=θ  
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Figure 5. Comparison to straight 
pipe. 
Third mode, 2.02 =RL , 0=θ  

For no-flow conditions figure 6 shows the influence of 2RL  on first mode frequency for 
three values of θ  and no flow conditions. It is clear that ω  has a maximal around 2.02 =RL  

and a minimal when 8.02 =RL . Furthermore, the effect of θ  is coupled with the effect of 

2RL  as shown in the figure. On the other hand. Figure 7 demonstrate the effect of branching 
angles on ω  for various 2RL . It is clear that θ  has negligible effect in the range between 0 

and 1 radiance (57o). However, θ  has stiffening effect for certain values of 2RL  while it has a 

softening effect for other values of 2RL . Consequently the vibration frequency increases or 
decreases accordingly. 

The effect of flow velocity on the lowest three modes when °= 30θ  is demonstrated in 
figure 8. The branching angle actually increase the critical flow velocity as demonstrated by 
comparing figure 7 to figures 3, 4, and 5. By carefully examining figure 8 one can conclude 
that the Coriolis effects are negligible for the range of flow velocities demonstrated. The 
effect of U  on ω  for various mass ratios ( β ) are demonstrated figure 8 also when °= 30θ . 
It is clear that as the mass ratio increases so the frequency and also the critical flow velocity. 
This can be explained by noting that while U  acts as centrifugal force opposing the stiffness 
restoring forces, increasing β  would result in changing the sign of Coriolis force along the 
span of the vibrating tube which acts as a counter effect against the centrifugal forces, thus 
increasing the system frequency. It should be noted that similar behavior is also found in 
straight pipes.  

Finally, the effect of flow velocity on the mode shapes is investigated. Figure 9 
demonstrate the effect of flow velocity on the second mode shape for 2.0=β  for the no flow 
condition and when 2=U . It is clear that the effect of U  on distorting the mode shape is not 
considerable since neutral stability is maintained hence no energy exchange between the fluid 
and the tube exists. Similar things can be said about other modes of vibration. Figure 10 
shows the variation of β  on ω  at 0=θ  to compare with straight pipes. Furthermore, Fig. 11 
shows the lowest three mode shapes. 
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Figure 6. Effect length ratio on non 
dimensional frequency 

____ °= 30θ  

… °= 45θ  

– – – °= 60θ  
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n of a Y-shaped tube conveying fluid

 

Figure 7. Effect of the branching angle 
on non-dimensional frequency of the 
first modes 

 

Figure 8. Effect of non-dimensional 
flow velocity on non-dimensional 
frequency of the lowest three modes.  

4.02 =RL , °= 30θ  
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Figure 9. Effect of non-dimensional flow 
velocity on third mode shape 

4.0=β , 4.02 =RL , °= 30θ  

 

 

Figure 10. Effect of U  on ω  for various 
β  when °= 0θ  and 1.02 =RL  (second 
mode) 

 

Figure 11. The lowest mode shapes for 
no flow conditions, 4.02 =RL , °= 30θ  

- - - - - first mode  
– – – – second mode 
–––––– third mode 
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NOMENCLATURE 

A – cross-sectional area of tube  T – axial tension in the tube 
L – total length of tube including branch  X – distance along tube 
E – modulus of elasticity of tube 

material 
 Y – transverse deflection of the tube 

from equilibrium 
I – moment of inertia  V – constant velocity of fluid in tube 
M – momentum  fm  – mass per unit length of fluid 
P – fluid pressure in tube  pm  – mass per unit length of tube 
Q – shear forces in the external surface  t – time 
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