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This paper describes a technique for the blind deconvolution based on the 
wavelet domain deconvolution that comprises Fourier-domain followed by wavelet-
domain noise suppression, in order to benefit from the advantages of each of them. 
The algorithm employs regularized Wiener filter, which allows it to operate even 
when the system is non-invertible. In fact, we model such image to be the result of a 
convolution of the original image with a point spread function (PSF). This PSF 
depends mainly on the image formation system. Unfortunately, it is often very 
difficult to model this PSF from the physical data, for this reason we consider the 
problem as a blind deconvolution. First, the identification of the blur is based on 
maximum likelihood and the solution is obtained iteratively by successive 
estimations of the PSF from the noisy blurred image. We propose a blind restoration 
by estimating the noise variance, the point spread function (PSF) and the original 
image from a blurred and noisy observation. Our method is based on regularized 
Wiener filter and RDWT (redundant discrete wavelet transform). We illustrate the 
results with simulations on some examples.  

1. INTRODUCTION 

The desire to remove distortion introduced by a spatially invariant point spread function 
(PSF) is a challenge faced in many imaging applications. The field of image restoration is 
generally concerned with the estimation of uncorrupted images from the noisy and blurred 
images acquired by imaging Systems. The image y, of an object x is given by two-
dimensional convolution. 

ν+⊗= xhy , (1) 

where x is the original undistorted image, y is the distorted noisy image, h is the PSF of the 
system, ⊗  is the convolution operator, and ν  is the corrupting noise. 

The diffraction of the optics of a camera produces a blur that is equivalent to a low pass 
filter that attenuates the highest image frequencies. Moreover, the electronics of the photo-
receptors add a noise typically a white noise. The problem of estimating x given knowledge of 
y and h is referred as the inverse problem. The inverse problem is difficult to solve due to its 
ill-posed nature. Any noise in the measured imagery complicates the problem further. A 
solution to the inverse problem is usually defined as an element of set of feasible solutions 
consistent with the linear relationship (1). For simplicity, we assume periodic boundary 
conditions, which means that the convolution is circular and that the noise ν  is circular 
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stationary. One then seeks to incorporate prior knowledge in order to narrow the choices and 
produce better estimates. In most practical situations, the first step in restoring an image is to 
identify the kind of degradation the image has suffered. For example, practical satellite 
images are often blurred due to limitations such aperture effects of the camera, camera 
motion, or atmospheric turbulence.  

There exist many classical and modern methods for solving linear inverse problem. The 
classical methods usually are deterministic in nature. The singular value decomposition 
(SVD) paradigm has been used, it has been shown to be mini-max best over certain classes of 
homogeneous functions [1]. However, as pointed out in [2], within such paradigm the bases 
are completely determined by the convolution operator and the underlying signal structure is 
totally ignored, which is very undesirable. One extreme is to perform no Fourier-domain 
regularization, this is equivalent to WVD (wavelet-vaguelette deconvolution) approach of 
Donoho [3] and the mirror-wavelet basis approach of Kalifa et al. [4]. The mirror-wavelet 
basis approach described in [4] (wavelet packet) adapts to the frequency response of the 
convolution operator H. Though the adapted basis improves upon the WVD. While 
multiscale/wavelet-based methods can avoid some of the drawbacks of traditional restoration 
methods, the existing method do have some limitations. First of all, some of the multiscale 
methods are analogous to classical Wiener filtering, reinterpreted in the wavelet-domain. 
These methods may have computational advantages, but do not overcome some of the pitfalls 
associated with linear filtering methods. However, Banham and Kastaggelos [5] apply 
multiscale Kalman filter to the deconvolution problem that circumvents this problem by 
switching the linear filter spatially based on an edge detection test. Their approach employs 
under-regularized constrained-least-squares prefilter to reduce the support of the state vectors 
in wavelet domain and a complicated prediction on edge and non edge quad-trees over-
complete wavelet basis. Recently a new method was developed by Neelamani and al [6] that 
combines classical Fourier domain regularization methods (Wiener filter) with wavelet 
domain thresholding/shrinkage. The advantage of such a formulation is the suppression of 
noise in singular or near singular operator situations. Most deconvolution algorithm are 
carried out using observed PSF, because theoretically computed PSF are usually not a very 
good match to the observations. The noise in observed PSF presents a problem, however 
when using a noisy PSF, the restoration algorithm ought to account for the fact that both the 
image and the PSF are noisy. The blind deconvolution approach allows one to construct an 
algorithm that takes as input a noisy image and a noisy PSF observation (this PSF is estimated 
and not known) and to construct as output estimates of both the PSF and the unblurred image. 
Blind deconvolution [8, 9, 12, 13] algorithms are predominately iterative and attempt to 
recover the image and PSF from a blurred observation using a variety of constraints such as 
non-negativity and object support.  

This paper is structured as follows: in the next section, we review the methods related to 
our work. We present an algorithm BIWD (blind iterative Wiener deconvolution) scheme and 
an improved one, BWARD (blind wavelet-based regularized deconvolution) algorithm in 
section 3. Illustrative examples lie in section 4. 
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2. RELATED METHODS 

We start with the imaging equation (1): 

),(),(),(),(
),(

jivqjpixqphjiy
DSqp

+−−= ∑
∈

, (2) 

where we assume that the original image, denoted by 1,0,1,0),,( −=−= NjNijix KK , 

and DS  is the finite support region of the distortion filter. 
Two degradations corrupt our observation y of the desired data x: convolution with a linear 

invariant system, having impulse response h and additive noise ν of variance σ² (see Fig. 1). 
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Fig. 1. Convolution model set-up 

Our approach is based on two sections: blur operator identification and image estimation. 
Here we investigate its performances and theoretical properties in greater detail. Our main 
contribution in this paper is a combination of two complementary approaches: (i) blur 
estimation of Katsaggelos and Lay [8], (ii) wavelet based deconvolution of Neelamani 
et al. [6]. In [8] a blind deconvolution method without using the advantages offer by the 
wavelets is proposed, and in [6] a non blind deconvolution method is described. Basically we 
have combined the two methods by adding some modifications in that way the combined 
method (Katsaggelos and Neelamani) gives better performances. 

Blur estimation 
In this section, we give a brief derivation of the method of Katsaggelos and Lay. For more 

details, the reader is referred to [8]. The iterative algorithm developed by Katsaggelos and 
Lay arrived to the following equations: 
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In (7) ),( nmY  and ),()(
/ nmM p

yX  are respectively the 2D DFT's (Discrete Fourier 

Transform) of the observed image ),( jiy  and restored image. ][ηRe , ∗η  and η denote Real 

part, complex conjugation and the magnitude of the complex numberη  respectively. 

),()1( nmS p
X

+  and ),()1( nmH p+  represent respectively the power spectral density of the input 

signal and the Fourier Transform of the PSF at the )1( +p iteration. Equation (3) shows that 
the restored image is the output of a Wiener filter, based on available estimate of the blur 
operator and the noise variance, with the observed image as input. The iterative algorithm 
developed in [8] (equations 3, 4, 5, 6 and 7) compute the restored image and the PSF. The 
Blackman-Tukey algorithm was used to compute an estimate of the power spectral density of 
y, which in turn was used as )0(

XS , the initial estimate of the power spectral density of x. The 

2D impulse ( 1),( =yxh  for 0== yx , and 0),( =yxh  elsewhere) was used as )0(h , the initial 
estimate of PSF. The method of Katsaggelos and Lay is computationally very intensive, as it 
consists of two nested iterative loops and, the algorithm takes a very large number of 
iterations to converge especially when the variance of the additive noise is important. 

Image estimation 
The method proposed in [6] consists of the following steps (see Fig. 2): 
1. Pure inversion: similar to the method used in [3]. 
2. Fourier-domain noise attenuation: employ a small amount of Fourier domain 

shrinkage using weights to achieve partial noise attenuation in the estimate αx~ . 
3. Wavelet-domain signal estimation: Since the estimate in step 2 contains some residual 

noise, we shrink the wavelet coefficients of αx~  at each scale according to the noise 
variance at that scale to obtain the final estimate. 
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Fig. 2. Direct deconvolution in three steps (inversion, Fourier and Wavelet shrinkage) 
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Wavelet-domain signal estimation remains effective, since the noise corrupting the wavelet 
coefficients is not excessive. In this method, we have assumed knowledge of the convolution 
operator. However, in many cases such as most practical imaging systems, the convolution 
operator is also unknown. In such blind deconvolution problems, the convolution operator 
must be estimated from the observation after that, this algorithm can be used to perform the 
image restoration. If H is non-invertible the deconvolution method of Fig. 2 fails, and since 
Wiener filter is know to be optimal among linear filters, we used instead a deconvolution in 
two steps see (Fig. 3). 
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Fig. 3. Direct deconvolution in two steps (Regularized Wiener filter and Wavelet shrinkage) 

Fourier non-iterative image restoration techniques have as their main advantage the short 
computation time they need to produce a solution, when compared with more elaborate 
iterative restoration methods. Also, they are strictly linear by design. The reason behind that 
computational efficiency lies in the fact that the computations are made in the Fourier 
transform domain, where the 2-D matrix operations needed for inverting the imaging equation 
are expressible as 1-D vector-only operations. Also, the existence of very efficient FFT 
algorithms adds to the overall efficiency of the technique. 

3. PROPOSED METHOD 

In this section, we present two algorithms, the blind iterative Wiener deconvolution 
(BIWD) used as a PSF estimator and the blind wavelet-regularized deconvolution (BWARD) 
algorithm. The noise power can be estimated using the median estimate of [2] performed on 
the finest scale wavelet coefficients (where the signal energy is expected to be negligible). 

Algorithm BIWD 
We introduced a small modification on equations (3, 4, 5, 6) above to make them 

applicable for the blind deconvolution that we consider in this paper. The modification is the 
introduction of a regularization parameter α  that conducted to a simplification of the 
algorithm described in [8] (we don't have to estimate the noise variance after each iteration). 
The equations (3, 4, 5, 6) become: 
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We can use equation (11) to identify the PSF and then, we restore the image while using 
the equation (8).  

To estimate XS , the power spectral density of the input signal, we use the equations 
(8, 9, 10) above. Pictures shown in Fig. 7(c) and 8(c) have been gotten by this method, (see 
test 1 and test 2). 

Algorithm BWARD 
In the previous section, we focused on the estimation of PSF. After that, Ward [6] 

(Wavelet-based regularized deconvolution) can be used to perform the deconvolution in the 
wavelet domain. BIWD (blind Wiener iterative deconvolution algorithm) generally converge 
after 2 or 3 iterations starting from a 2D impulse as initial value of the PSF, it is reasonable to 
think, that if the initial guess for the PSF was sufficiently good, then the algorithm converge 
faster to a more accurate PSF, which in turn leads to better restoration of the unblurred image. 
The PSF is estimated with the same method described above (BIWD), only the initial guess 
was changed (the number of iterations is fixed to one), and then restore the image by using the 
modified wavelet domain deconvolution algorithm. The implementation of the regularized 
inverse filter involves the estimation of the power spectrum of the original image in the 
spatial domain. The final algorithm is shown below, where 2D uniform blur is defined as 

2/1),( dyxh =  for DSyx ∈),( , the support size of the PSF is d×d and 0),( =yxh  elsewhere. 
This of course results in: 

∑
∈

=
DSyx

yxh
),(

1),( . (12) 

Our BWARD algorithm is shown in table 1: 

Table 1. BWARD algorithm 

Input initial estimates for image x (the observed image y), and PSF h (uniform 2D blur). 
1. Estimate the noise variance. 
2. Estimate the power spectral density of the input signal. 
3. Estimate the near-optimal regularization parameter α. 
4. Apply one iteration of the algorithm BIWD to estimate PSF. 
5. Apply modified Ward algorithm (Fig. 5) to restore the image. 
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One used a part of the BIWD algorithm to estimate the PSF, just the initial conditions 
(uniform blur) changed. We use the most simple Daubechies wavelets (Haar wavelet) and we 
apply the redundant wavelet decomposition and reconstruction algorithms of complexity 
O( lo  n) for n given data (n=N×N pixels). 

For the restoration of the image, we have modified the initial algorithm Ward shown in 
Fig. 4 by changing the position of the Fourier-domain shrinkage (see Fig. 5). The 
regularization parameter is chosen to be level dependent (same at each level). We have used 4 
decompositions level in our simulations. To compare the results of the blur identification, the 
following figure of merit was used: 

∑ ∈

−
=

DSji
jih

hh
error

),(

2),(

ˆ
, (13) 

where h and ĥ  denotes the original and the estimated PSF, and DS  their respective supports. 
The noise added to the blurred image was evaluated by measuring the blurred signal to noise 
ratio denoted by 

2

2

10log10BSNR
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= . (14) 

And the performance of the restoration algorithm was evaluated by measuring the 
improvement in signal to noise ratio defined in decibel (dB) by 
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where x , x̂  and y  are respectively the original, restored and degraded images, y~  is the 
shifted version of the observed image that minimizes the ISNR. 
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Fig. 4. Wiener and Wavelet shrinkage with one regularization parameter. Blocks H0 and H1 
denote the low-pass and the high-pass filters for the filter bank 
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4. NUMERICAL RESULTS 

All of our code was written in MATLAB to take advantage of its visualization capabilities. 
Experiments will be given which show the performances of BIWD and BWARD algorithms. 
Our current implementation is not restricted to small images but larger images than 512×512 
pixels take more time to compute the restored image and needs more memory. Many choices 
of the thresholding value is possible, usually it is chosen based on some estimate of the noise 
level νσ  (standard deviation of the noise) in the data. In our case the shrinkage parameter is 

fixed to νσ²)log(2 N  for simplicity, where ²N  is the number of samples and hard 
thresholding is performed to remove the residual noise. This choice is suggested in [2] as a 
probabilistic upper bound on the noise level (Donoho, Johnstone and collaborators have 
proven a lot of optimality for this choice this is the so-called universal threshold). Other 
choices include the SURE-threshold [2] and Bayesian estimates [14, 15]. Clearly one 
threshold cannot remove noise decently the amount of noise νσ  depends on the resolution 
level. Scale-dependent thresholds are more adaptive to signal characteristics (Ward algorithm 
is based on Fig. 4 and the BWARD is based on Fig. 5). 

Comparison with the blind Lucy-Richardson algorithm 
The blind Lucy-Richardson algorithm method is an extension of the well-known Lucy-

Richardson method [11, 12]. The most common and efficient implementation makes use of 
the FFT to compute convolution. This implicitly imposes periodic boundary conditions on the 
image. The blind version is similar to the original method; each iteration alternately uses 
several iterations of the non-blind algorithm to estimate a new PSF and then a new image. It is 
generally more effective for images with fewer sharp edges, since convolution tends to 
smooth edge boundaries. For comparison, we included this method, which is widely used in 
image processing for deconvolution, especially in the astronomical domain. 
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Fig. 5. Wiener and Wavelet shrinkage with one regularization parameter for each wavelet 
scale. Blocks H0 and H1 denote the low-pass and the high-pass filters for the filter bank 
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Test 1 
Our first test consists of an image of cameraman of size (256×256). The original PSF is a 

Gaussian blur with variance 10 truncated to a support of size (7×7). The blurred image was 
generated by convoluting the original image and the PSF (no noise is added in this test). The 
original and blurred images are shown in Fig. 6(a) and Fig. 6(b) respectively. An image 
(cameraman) is restored (see Fig. 6(e)) using the BIWR algorithm, the restored image shows 
significantly more detail than the blurred one (ISNR≈12dB). In contrast to the Lucy 
Richardson method (Fig. 6(f)), the smooth region and most edges are well preserved in the 
image estimate. Because the Fourier basis used by the algorithm have support over the entire 
spatial domain, ripples in the restored image result. The restored PSF is shown in Fig. 6(d) 
and presents an error of 0.0200 it looks like the original one. When we take as an initial guess 
for the PSF a uniform blur, the method converge in one iteration.  

Test 2 
In the previous test (in test 1 no noise was added to the blurred image), our second test 

consists of an image boats of size (256×256). The blurred image was obtained by convoluting 
the original image and the PSF (the same as in test 1). The original and blurred images are 
shown in Fig. 7(a) and Fig. 7(b) respectively. Random, zero mean noise is added to the 
blurred image, resulting in a degraded image (BSNR = 40 dB). The restored PSF is shown in 
Fig. 7(d) and it is similar to the original one. An image (boats) is restored (see Fig. 7(f)) using 
our algorithm BWARD. The restored image shows significantly more detail than the blurred 
image and the edges are well preserved, (ISNR = 9.0 dB). It is slightly better than the one 
obtained by the non blind algorithm Ward proposed by Neelamani et al. [6] (Fig. 7(e) 
ISNR = 8.7 dB), although this last method uses the original PSF (this unexpected result may 
be explained by the fact that, the PSF act as a filter for white noise, so we have a colored 
noise which is better eliminated by an algorithm that takes some in consideration this point, 
see Fig. 4 and Fig. 5).  

CONCLUSIONS 

We have presented a blind deconvolution algorithm to enhance the resolution of images 
obtained by a system who produces a degraded image. The edges are preserved and the 
computational cost is reasonable. The proposed method is an improved version of the Ward 
algorithm by adding the estimation of the PSF. Our method (BWARD) can be potentially 
employed in a wide variety of applications such as satellite imagery, and seismic 
deconvolution to obtain enhanced deconvolution estimates. Several drawbacks still to 
overcome: (i) it is not trivial to use non-Gaussian noise, (ii) the investigation on the choice of 
the optimal regularization parameter. 
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Fig. 6. Image Cameraman, from top to bottom clockwise: 

a) Original image b) Degraded image 
c) Original PSF (7×7 pixels) d) Recovered PSF (error=0.0200) 
e) BIWD method f) Lucy-Richardson method 
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Fig. 7. Image Boats, from top to bottom clockwise: 

a) Original image (256×256) b) Blurred and noisy image (BSNR = 40 dB) 
c) BIWD method (notice the ripples) d) Recovered PSF (error = 0.0200) 
e) Ward method f) Our method (BWARD) 
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