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Some examples of vibration energy computing in beams structure using Finite 
Element Method (FEM) and Statistical Energy Analysis (SEA) are presented. 
Calculations are carried out for periodic structure, that consists of equal beams and 
of beams whose lengths are random variables with equal mean value and some 
deviation. The later case is real one, when the dimensions of structure elements are 
not known exactly but are specified as a mean value and some tolerance. It is 
shown that the beams energies, calculated by FEM, in structure consisting of equal 
beams and beams, whose lengths are random variables with equal mean value, are 
different. Thus FEM computation which uses solely mean characteristics can be 
inaccurate. Difference between average FEM and SEA results is not significant. It 
is concluded that SEA – less expensive method – is quite suitable for practical 
engineering computing. 

INTRODUCTION 
The most common methods for computing of vibration and sound radiation of complex 

structures are Finite Element Method (FEM) and Energy Method (EM). EM is often 
designated as Statistical Energy Analysis (SEA), taking into account some assumptions when 
applying the method. Commercial packages that implement these two methods are designed: 
ANSYS, NASTRAN, ABACUS (FEM), AutoSEA, SEAM, SEADS (SEA) and others. 

FEM is exact and multi-purpose method. It bases on fundamental theory of elasticity. But 
using the method numerical problems arise when total number of elements becomes too large 
(for complex structures and when frequency increases). Thus FEM is usually applied at low 
frequencies, SEA — at middle and high frequencies. 

The intrinsic property of any real structure and composing elements is uncertainty of 
characteristics. For example, dimensions are specified with some tolerance. Material 
characteristics (elasticity moduli, loss factors, etc.), applied forces (loading points or areas, 
phases), etc. are not known exactly. Mean (most probable) values are usually used as input 
data for engineering calculations.  

The example of FEM calculation of vibration energy in periodic beam structure is 
presented in this paper. Both determinate and random values are used as input data. It is 
shown that using determinate (mean) values solely can give erroneous results. Comparison of 
FEM and SEA results is also carried out. 
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1. EXAMPLE OF BEAM STRUCTURE 

The structure consisting of four consecutively joined at right angle beams, presented in 
fig. 1, is used for calculations. Stiff junctions are simply supported. In such a structure only 
transverse (bending) vibrations arise under the action of transverse force. This circumstance 
simplifies calculations and analysis but does not confine conclusions. 

Beams cross-section is 5×1 cm. The beams are joined along long side of the cross-section. 
Material is steel, internal loss factor is 0.01, affecting harmonic force ( ) at the free end of 
beam 1 is 1 N. Energy of transverse vibration is computed by FEM and SEA. 
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Fig. 1. 
The structure, consisting of consecutively 
joined beams, that is used for calculations 

 
Calculations are carried out for periodic structure consisting of equal beams. Periodic 

structures are widely used. Some examples are ribbed structures, standard construction. It was 
detected [1] that vibration decrease under propagation in periodic structure is less than in non-
periodic one. Therefore periodic structures case is most important for noise control. 

Sizes of real structures and their elements are given as mean value and tolerance as a rule. 
Mean values are generally used in engineering computing. In this study we calculate vibration 
energy of beam structure using two types of input data. The first type is solely mean lengths 
of beams, which are equal 1 m. The second one is random samples of beams lengths from 
normal distribution with mean value 1 m and dispersion 0.05 m. 

The difference between randomly generated beams lengths can be 10 cm and even more. 
Such a large difference of formally equal elements is not typical for mechanical structures. 
However, not directly length, but relation between resonant frequencies of adjacent beams 
influences on energy propagation in structure. This relation depends on both lengths and a lot 
of other factors: initial curvature, residual welding and static stresses etc. Finally, additive 
effect of these factors leads to decreasing of probability of resonant frequencies coincidence. 
We approximately take this phenomenon into account using larger dispersion of beams 
lengths. 

Calculations were carried out for ten modifications of beam structure, which differ in 
lengths of beams composing structure. Modifications are presented in Table 1. 
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Table 1. Beams lengths (m), composing structure in fig. 1 
(random samples from normal distribution with mean value 1 m and dispersion 0.05 m) 

modification beam 1 beam 2 beam 3 beam 4 
1 0.9892 1.0071 1.0235 1.0501 
2 1.0493 1.0350 0.9771 1.0060 
3 1.0505 1.0574 0.9558 1.0926 
4 0.9786 1.0182 0.9459 1.0120 
5 1.0587 0.9244 1.0271 1.0177 
6 1.0285 0.9319 0.9700 0.9944 
7 0.9656 1.0308 0.9913 1.0109 
8 0.9420 1.0415 0.9268 1.0102 
9 0.9697 0.8558 1.0357 1.0653 
10 1.0476 0.9948 0.9756 0.9647 

2. FEM CALCULATION 

At FEM modeling, the beams were divided into standard beam elements. Length of each 
element is about 1 cm. Beam’s vibration energy ( ) was calculated from complex 

displacements in nodes of a mesh by formula 
bE
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where  — displacement amplitude in node,  — beam’s mass per a node, N — number 

of nodes in mesh.  
nξ nM

Calculations were carried out at resonant frequencies of structure and the results were 
summed in octave bands. Results for beams vibration energy (individual results for ten 
modifications of the structure and average values) are presented in fig. 2. Individual results 
are characterized by a significant dispersion. Fig. 3 shows that the energy dispersion mainly 
decreases when frequency increases and the energy dispersion is larger for beams which 
farther from the excitation point (beam 1). 

Fig. 2 also shows vibration energy of beams composing structure, when the beams are 
equal (1 м long). In this case, energy decrease along the structure is less in comparison with 
average decrease for ten random modifications (fig. 4). For example, difference of energies of 
beams 1 and 4 less than 5 dB at high frequencies if beams are equal, but the average 
difference for ten random modifications is about 10 dB. The reason is the coincidence of 
resonant frequencies for equal beams intensifies energy exchange. 

Note (fig. 4б) that vibration energies of equal beams 2, 3 and 4 are nearly the same. This 
result agrees with theoretical data, presented, for example, in [1]: vibration decrease in 
structure with periodical obstacles like ribs on plate can be seen at initial (one or two) 
obstacles. Farther there is no vibration reduction. However in-situ measurements of vibration 
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in deck plating and ship hull (these structures are considered as periodically ribbed structures) 
show that vibration decrease does not depend on distance from excitation point [1]. It may 
mean that real structures should not be considered as strictly periodical. 

Thus, usage of equal beams lengths as input data, leads to overestimated energy for distant 
beams. Possibility of sizes (and resonant frequencies) coincidence for real structures is low. 
Formally periodical structure is not periodical in fact. For correct calculation it is rightly to 
consider the length as random variable. In this case the most probable (average) result is 
lower than the result derived for equal beams. It seems the latter result more correctly 
conforms to vibration propagation in complex real structures. However it is necessary to carry 
out a lot of calculations using a set of random samples from population of random variables, 
which characterize, in the general case, geometry, materials properties, applied forces etc. 
Computing becomes more expensive. 
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Fig. 2. Vibration energy of beams 1…4, FEM computing 

+ + + + individual results for ten modifications of the structure (table 1), 
average energies over 10 random modifications, 
equal beams (1 m) 
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Fig. 4. Vibration energy of beams 1…4, FEM computing 
а) average values over 10 random modifications, б) equal beams (1 m), 

 beam 1,  beam 2,  beam 3,  beam 4 
 
 

3. SEA CALCULATION 

Set of energy balance equations for the structure presented in fig. 1 is  
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where 1η … 4η  are the internal loss factors in beams; 12η … 43η  are the coupling loss factors 

for beams;  is the input power injected into beam 1 by force ; …  are the unknown 
vibration energies of beams; 

1W F 1E 4E
ω  — circular frequency. 
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Coupling loss factors are calculated by formula 

i

giij
ij L

c
ω
τ

η = , (3)

where ijτ  is the transmission coefficient of bending waves energy from beam i into beam j, 
 is the group velocity of bending waves in beam i,  is the length of beam i. gic iL
Transmission coefficient for beams joined at right angle was derived analytically [2]: 

τ = 0.5 for beams of identical cross-section, like in the case under consideration.  
Calculations show that influence of beams length varying in moderate bounds (as in 

table 1), does not practically affect the results of SEA calculations. Therefore SEA results, 
presented below, concern the structure which consists of equal beams only. 

Input power, injected into the structure under the action of force, was defined by FEM and 
approximately. Using FEM results, input power was calculated as follows: 

( )*Re
2
1 vFW ⋅= , (4)

where F is the force affecting the structure which is specified under FEM modeling (1 N), 
 is the complex conjugate velocity at driving point. Calculations were carried out, as 

before, at resonant frequencies, results were summarized in octave bands. 

*v

Input power was defined using FEM for the following structures: 
− structure composing of four beams (fig. 1), 
− structure composing of two beams (fig. 5а), 
− one beam (fig. 5б). 
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Fig. 5. Structures for FEM calculations of input power 

 
In all cases, input power was calculated for ten modifications of the structure with different 

beams lengths. Beams lengths, as before, were random samples from normal distribution with 
mean value 1 m and dispersion 0.05 m. Beams lengths used in calculations are presented in 
tables 1, 2 and 3. 
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Table 2. Beams lengths (m), composing structure of two beams, fig. 5a 
(random samples from normal distribution with mean value 1 m and dispersion 0.05 m) 

 modification 
 1 2 3 4 5 6 7 8 9 10 
beam 1 1.067 0.995 1.018 0.919 1.076 1.021 1.010 1.100 0.959 1.008
beam 2 0.986 1.094 0.944 1.043 0.949 0.989 1.037 1.027 1.074 0.992

 

Таблица 3. Beam length (m), fig. 5b 
(random samples from normal distribution with mean value 1 m and dispersion 0.05 m) 

modification 1 2 3 4 5 6 7 8 9 10 
length 0.966 0.949 0.938 1.014 0.979 1.003 0.982 0.977 1.019 1.036

 
Calculations show that dispersion of input power is relatively small. Difference between 

maximum and minimum input power calculated over the ten random samples is about 2 dB at 
middle and high frequencies for all three structures (fig. 6). Vibration energy changes 
approximately in the same bounds. As an example, vibration energy of beam 4 calculated 
using ten input powers, derived for model in fig. 5b, is presented in fig. 7. Following 
calculations use average input power for each structure. 
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Fig. 6. Difference between maximum and 
minimum input power calculated over the 

ten random samples  
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 Fig. 7. Vibration energy of beam 4 using 
input power calculated when force acts on one 

beam, fig. 5b (10 random modifications of 
beam length, table. 3) 

 

_________________________________________________________________________________________ 
I. Grushetsky, A. Smol’nikov 
Comparison of FEM and SEA for vibration computing in periodic structures 
 



Electronic Journal «Technical Acoustics» 2005, 9 
_________________________________________________________________________________________ 

8 of 10

Input power in octave frequency bands was calculated approximately by the formula 

( )fN
Z

ZF
W

F

F ∆⋅= 2

2

2

Re
, (5)

where  is the impedance of a beam with respect to a force, FZ ( )fN ∆  is the number of 
resonant frequencies in octave band ( f∆  is the bandwidth). Impedance was defined at 
resonant frequencies i.e. minimum impedance of a beam, excited at free end, was used [3]: 

4min
ηωmLZF = , (6)

where  is the mass of a beam per length unit (1 m), m η  is the internal loss factor; 

( ) 4
2ωB

mfLfN ∆=∆ , (7)

where B  is the bending stiffness of a beam. 
Input powers calculated by FEM and approximately (formulas (5 – 7)) are presented in 

fig. 8. Input powers calculated in a different ways (exactly and approximately) and using 
models of different complexity (fig. 1, 5) are nearly the same. 

SEA results for vibration energies of beams in comparison with FEM are presented in the 
next section.  
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4. COMPARISON OF SEA AND FEM RESULTS 

Vibration energy of beams 1…4 in the structure depicted in fig. 1, which is calculated 
using SEA and FEM is presented in fig. 9. One can see the following: 

1. SEA and FEM (average over ten random modifications of the structure) results 
coincide well. The difference for the most distant beam (4) is not more than 2 dB at 
middle and high frequencies. 

2. SEA results are in the range between maximum and minimum FEM results with rare 
exception. 
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3. SEA and FEM (average) results coincide in a wide frequency range including low 
frequencies where only one resonance frequency of the beam is in octave bands (31,5, 
63  and 125 Hz). At the same time there are two resonance frequencies of the entire 
beam structure (fig. 1) in octave bands 31,5 и 63 Hz and three frequencies are in band 
125 Hz. It is generally considered that SEA is applicable when resonant frequencies 
density is higher. Presented results allow us to hope to extend frequency range of SEA 
application, but additional studies are necessary. 
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Fig. 9. Vibration energy of beams 1…4 composing structure in fig. 1 

 SEA, input power is calculated by FEM for entire structure in fig. 1 

 SEA, input power is calculated by FEM for one beam (fig. 5b) 

 SEA, input power is calculated approximately by formulas 5–7 

 FEM, average values over 10 random modifications of the structure 

 FEM, minimum and maximum values over 10 modifications of the structure 
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CONCLUSION 

FEM computation of vibration in formally periodical beam structure was carried out taking 
into account uncertainty of lengths of beams composing structure. Input data were presented 
as mean value and some dispersion. Calculated vibration energies are characterized by a large 
variation. Value of variation depends on dispersion of input data. Average energies 
appreciably differ from the energies calculated for equal beams. 

In engineering practice, mean values for geometrics, material properties etc. are usually 
used as input data. It can lead to erroneous results for periodic structures since perfect identity 
(periodicity) of structure elements is rather improbable for real structures.  

To obtain more realistic results for real structures, FEM calculations should be carried out 
using input data which take into account possible deviation of characteristics from mean 
values. Calculations become more expensive. However calculation examples, presented in 
this paper, show that SEA provides results, which agree well with average FEM results. SEA 
is essentially less expensive technique because of simplified modeling of a structure, fewer 
amounts of input data, lower requirements for computers. 

One weak point of SEA is input power injected into the structure. This quantity is hardly 
can be defined quite accurate for real structures and forces using simplified engineering 
formulas. One can use FEM to calculate input power. At that, it seems, no need to simulate 
complex structure entirely. In presented example we included in FEM model only the 
component on which force acts, and input power was calculated sufficiently accurately. 

Vibration and sound propagation processes in structures consisting of beams, plates, shells, 
spaces filled with fluid are similar. Therefore presented example qualitatively describes 
energy propagation not only in beams structures but in other types of structures as well. 
Calculation methodology and conclusions can be possibly applied more widely.  

The study confirms that SEA is efficient basis for computation of vibration and sound in 
complex structures which consist of a lot of elements. In the SEA framework, to increase 
accuracy of calculations, one can rationally use FEM to calculate, for example, input power or 
coupling loss factor for complex junctions if there are no analytical formulas for transmission 
coefficients. For these sorts of calculations one can simulate fragments of complex structure 
(not a structure entirely), for example, machine foundation, elements in junction etc. 
Therefore computing expenses are comparatively moderate. 
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