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Technique for coupling loss factors (CLF) determination with taking into 
account uncertainty of subsystems is presented. Two beams in junction are 
considered by an example. Random variables are beams length, which obey the 
normal distribution law. Finite Element Method (FEM) is used for CLF computing. 
To verify the technique validity computation example is presented for structure that 
consists of four sequentially joined beams with uncertain length. Calculations are 
carried out using two techniques: FEM and Energy Method (EM). It is shown that 
computing results by two techniques agree well both for mean values and for 
dispersion. 

INTRODUCTION 
The most common methods for computing of vibration and noise in complex structures are 

Finite Element Method (FEM) and Energy Method (EM). EM is often called as Statistical 
Energy Analysis (SEA) taking into account some assumptions when applying the method. 
Commercial packages that implement these two methods are designed: ANSYS, NASTRAN, 
ABACUS (FEM), AutoSEA, SEAM, SEADS (SEA) and others.  

FEM is more accurate and multipurpose but more expensive method since it requires detail 
structure modeling and high-performance computers. Computation costs increase with 
frequency. Therefore FEM is usually applied at low frequencies. At middle and high 
frequencies EM is more appropriate method. EM is approximate and comparatively 
inexpensive. Cost effectiveness is determined by simplified structure modeling, fewer 
amounts of input data, less computer expenses. 

When applying EM, one should know coupling loss factors (CLF) of subsystems in 
structure. CLF can be determined analytically, from experiment and by using numerical 
calculations. Analytical CLF are defined from transmission coefficients of energy via 
subsystems junction. But these coefficients are known for several simple junctions: L-, T- X-
shaped rigid junctions of semi-infinite beams and plates and for some other junctions [1, 2, 3]. 
It is usually insufficiently for practical computing of vibration in complex structures like ships 
for example. CLF determination from experiment requires complicated and expensive 
physical experiments. 
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Most universal numerical way for CLF determination is based on numerical modeling 
(FEM for example) of subsystems in junction. Using FEM, vibratory energies of subsystems 
are calculated. Then CLF are defined from a set of liner equations in which coefficients are 
energies. No additional assumptions are used in this procedure. Example of CLF computing 
for two beams in junction using FEM was presented in [4]. It was shown that using in EM 
CLF calculated by FEM provides more accurate results for complex structure than applying 
analytical CLF. 

This conclusion was obtained for deterministic input data. However properties of real 
structures: geometrical dimensions, material properties, external forces, load application 
points, etc. — are not known exactly. Besides, technological factors of random origin like 
welding stresses influence on mechanical properties of structures. In fact, uncertainty is 
essential property of real structures. Because of all the random factors there are no identical 
structures, which are formally identical [5, 6].  

An example of FEM computing for structure with uncertain properties is presented in [7]. 
Periodical structure which consists of four beams having equal mean lengths and some 
lengths dispersion was considered. Ten structures, which are samples from random assembly, 
were calculated. Results are characterized by a large variation. It demonstrates, that 
probabilistic approach is adequate for computing vibration in real structures.  

When using EM, input data are CLF, internal loss factors (ILF) and input power. These 
input data substantively are random variables, which properties can be defined experimentally 
or evaluated numerically. An example of CLF determination using FEM for junctions of 
building slabs, which dimensions are random variables, is presented in [8]. In [9] uncertainty 
of plates properties was simulated by point masses randomly distributed over plates’ surface. 
In this paper probabilistic approach is applied for CLF determination of two beams in junction 
applying FEM. Computing example for complex structure, where random CLF are used, is 
presented 

1. CLF DETERMINATION USING FEM 

For CLF determination, sets of energy balance equations are formed for cases of energy 
injection via each subsystem separately. For example, for two subsystems we have a set of 
four equations for determination of four unknowns: two CLF ( 12η , 21η ) and two internal loss 

factors (ILF: 1η , 2η ). When ILF are known and they are equal, analytical solution of energy 

balance equations is the following [4]. 
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 where ,  ,  are the vibratory energies of subsystems 1 и 2 (first index) when 
energy is injected in subsystems 1 и 2 (second index), respectively, which are defined by FEM. 
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Using this procedure, CLF for two beams in junction were obtained. Substitution of these 
CLF into energy balance equations for complex structure is provided results, which agree well 
with more accurate FEM solution [4]. 

2. CLF DETERMINATION FOR TWO BEAMS HAVING RANDOM PROPERTIES AND 
STATISTICAL PROPERTIES OF CLF 

Let us consider CLF for beams in junction at right angle discussed in [4], fig. 1, taking into 
account uncertain beams length. Stiff junction is simply supported. In such a structure only 
transverse (bending) vibrations arise under the action of transverse force. This circumstance 
simplifies calculations and analysis but does not confine conclusions. Beams length is 1 m, 
cross-section is 5×1 cm. The beams are joined along long side of the cross-section. Material is 
steel, internal loss factor is 0.01. 

 

1 

2 
F 

F 

 

 

Fig. 1. 

Structure for FEM determination 
of CLF 

 
To obtain CLF statistical properties, several calculations of vibratory energy were carried 

out by FEM. At that random sets of input data (random sets of beams length) were used. Next, 
CLF were calculated by formulas (1). In this way a set of CLF samples was obtained. 
Statistical properties of entire CLF assembly can be evaluated from these samples. 

At FEM simulation, the beams were divided into standard beam elements. Length of each 
element is about 1 cm. Beam’s vibration energy was calculated from complex displacements 
in nodes. Calculations were carried out at natural frequencies of the structure and the results 
were summed in octave bands. 

Nine calculations for nine random sets of beams length (table 1) were executed. Beams 
lengths were random samples from normal distribution with mean value 1 m and dispersion 
0.05 m.  

 

Table 1. Beams length (m), composing structure in fig. 1 
(samples from normal distribution with mean value 1 m and dispersion 0.05 m) 

sample  
1 2 3 4 5 6 7 8 9 

beam 1 1.067 0.995 1.018 0.919 1.076 1.021 1.010 0.959 1.008
beam 2 0.986 1.094 0.944 1.043 0.949 0.989 1.037 1.074 0.992
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Computing results are presented in fig. 2. It can be seen, that range of random CLF is quite 
wide, especially in frequency bands which contain several first resonant frequencies of beams 
(125–500 Hz). A little derivation from equality of beams leads to drastic CLF decreasing. 
This result agrees with theoretical concept, confirmed experimentally, concerning vibration 
transmission via obstacle [2]. CLF range becomes narrower with frequency increasing. Mean 
values approach to analytical CLF at higher frequencies. CLF difference in pairs 12η  and 21η  
is not significant. 

 CLF  

Fig. 2. 

CLF for two beams with mean value 
1 m and dispersion 0,05 m, 

FEM computing: 

 nine randon values 12η , 
 nine randon values 21η , 

 mean values 12η , 21η , 
as well as: 
CLF for equal beams, 
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Using obtained results, CLF statistical properties (distribution law, mean value, dispersion) 

were determined. If beams length samples were obtained from normally distributed assembly, 
then the most suitable distribution law for CLF is normal distribution of decimal logarithm of 
CLF. The same distribution law is pointed out in [7]. I.e. CLF statistical properties — mean 
value and standard deviation — are calculated for values 12lgη  and/or 21lgη , which are 
approximately the same in considered example. Statistical properties of ( 2112lg )ηη  are obey 
the normal distribution law as well. 

3. COMPUTING OF VIBRATORY ENERGY OF COMPLEX STRUCTURE 

3.1. Structure for calculation 
To verify obtained CLF, calculations were carried out for the structure presented in fig. 3. 
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Fig. 3. 
Structure consisting of four beams 

used for calculations for the purpose of 
CLF verification 

_________________________________________________________________________________________ 
I. Grushetsky, A. Smol’nikov  
Computing of coupling loss factors using FEM, probabilistic approach 
 



Electronic Journal «Technical Acoustics» 2006, 10 
_________________________________________________________________________________________ 

5 of 12

3.2. FEM computing 
FEM computing were carried out for 10 samples of the structure, in which beams length 

are random samples from normal distribution with mean value 1 m and dispersion 0.05 m 
(table 2), i.e. beams statistical properties are the same as under CLF determination. 

 

Table 2. Beams length (m), composing structure in fig. 3 
(samples from normal distribution with mean value 1 m and dispersion 0.05 m) 

sample beam 1 beam 2 beam 3 beam 4 
1 0.9892 1.0071 1.0235 1.0501 
2 1.0493 1.0350 0.9771 1.0060 
3 1.0505 1.0574 0.9558 1.0926 
4 0.9786 1.0182 0.9459 1.0120 
5 1.0587 0.9244 1.0271 1.0177 
6 1.0285 0.9319 0.9700 0.9944 
7 0.9656 1.0308 0.9913 1.0109 
8 0.9420 1.0415 0.9268 1.0102 
9 0.9697 0.8558 1.0357 1.0653 
10 1.0476 0.9948 0.9756 0.9647 

 
Computing results for beam 4 (most distant from the point of energy injection) are 

presented in fig. 4 (these results along with description of calculating procedure were 
presented in previous authors’ paper [7]). 
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Fig. 4. 

Vibratory energy of beam 4 (fig. 3), 
FEM computing with 10 random sets of input 

data (table 2) 

midband octave frequency, Hz  
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3.3. EM computing 

3.3.1. Energy balance equations 
Energy balance equations for the structure in fig. 3 is the following 
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where 1η … 4η  are the ILF in beams; 12η … 43η  are the CLF;  is the power injected into 

beam 1 from force 
1W

F ; …  are the unknown vibratory energy; 1E 4E ω  is the circular 
frequency. 

Random values in equations (2) are CLF and input (injected) power. ILF we shall consider 
as deterministic value. 

To obtain final result — beams energies in the form of mean values and confidence 
intervals — one should obtain some assembly of energy balance equation solutions. In these 
equations input data (CLF, input powers) are samples from assemblies of random values. To 
generate the samples, information about statistical properties (distribution law, mean value, 
dispersion) of input data is used. Statistical properties of CLF and input power can be 
obtained from FEM. 

3.3.2. Coupling loss factors 
Using CLF statistical properties, which were derived from FEM calculations (section 2), 

random CLF samples were generated for substitution in energy balance equations. One value 
from pair of decimal logarithm CLF ( ijηlg ) was generated using statistical properties of 

12lgη  or 21lgη . Second CLF jiη  was obtained using statistical properties of )lg( 2112 ηη . In 

that way real relationship — ij jiη η≈  at middle and high frequencies — was attained. CLF 

calculated by formulas 

( )lg
10 ij g

ij

η
η = ; 

( )( )lg
10 ij ji g

ji ij

η η
η η= ⋅ ,

 where index “g” means that value in brackets is obtained as random sample. 

(3)

Some examples of CLF and relationship of CLF pair (generated values) are presented in 
fig. 5 and 6. In the same figures, for visual comparison, the maximum and minimum values, 
which were obtained in section 2 from nine samples only, are presented. 
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 CLF 
 

Fig. 5. CLF for two beams in junction: 

ijη  random samples generated 
(100 random values at each 
frequency) 
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Fig. 6. 
Relationship of CLF in pair jiij ηη  

jiij ηη  random samples 
generated (100 random values at 
each frequency) 
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3.3.3. Input power 
To obtain statistical properties of input power, FEM computing was carried out for beam 

simply supported at one end (fig. 7). Force acts at the other end. Substitution of entire 
structure by fragment is made taking into account that entire complex structure (like ship or 
plane) simulation is practically impossible in a wide frequency range including middle and 
high frequencies. One has to restrict the simulation by involving a part of a structure into the 
model. 

Beam length is random variable with mean value 1 m and dispersion 0.05 m (table 3). 
Using FEM simulation results, input power was calculated by formula ( ) 2Re *vFW ⋅= , 

where F is the acting force, which is specified in FEM simulation (1 N in our case),  is the 
complex-conjugate velocity in node where force acts. 

*v
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It was found in this example that input power calculated from fragment simulating 
practically coincide with input power, obtained from entire structure (fig. 8 and 9) excluding 
low frequencies where one first resonance frequency is in the band (63 Hz).  

 

 1 F

 

 
Fig. 7. Structure for FEM determination 

of input power  

 

Table 3. Beams length (m), fig. 7 
(samples from normal distribution with mean value 1 m and dispersion 0.05 m) 

sample 1 2 3 4 5 6 7 8 9 10 
length 0.966 0.949 0.938 1.014 0.979 1.003 0.982 0.977 1.019 1.036
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31 63 125 250 500 1000 2000 4000 8000
90

100

110

120

Fig. 8. 

Input power (FEM computing): 
 one beam simulation, mean values 
over the 10 random beam lengths 
(table 3); 

  four beams simulation, mean values 
over the 10 random structures 
(table 2) 

midband octave frequency, Hz  
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Fig. 9. 

Maximum and minimum input power 
(FEM computing): 

 one beam simulation, 10 random 
beam lengths (table 3); 

  four beams simulation, 10 random 
structures (table 2) 

midband octave frequency, Hz  
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Using FEM results, statistical properties of input power were determined in the same way 
as for CLF. Random samples of input power were generated for substitution in energy 
balance equations.  

It should be noted that input power dispersion is much less than CLF dispersion in 
frequency range 125–8000 Hz (compare fig. 2 and 9). Therefore input power dispersion does 
not affect final results significantly. One could neglect this dispersion and to use mean values 
of input power in further calculations. 

3.3.4. Comparison of EM and FEM calculating results  
EM calculations were carried out for the following input data. 

− CLF: 100 samples for each junction from CLF distribution with properties defined in 
section 3.3.2. In this way one of two CLF was generated. The second one was defined from 
relationship of CLF in pair (see section 3.3.2). 

− Input power: 100 samples from distribution with properties defined in section 3.3.3 for one 
beam. 

− ILF: deterministic value, =iη 0,01. 

Thus, 100 EM calculations were carried out. In each calculation CLF and input power were 
random values simultaneously. 100 EM results are compared with 10 FEM results, presented 
in section 3.2. 

Vibratory energies of beams 1…4 in some octave band are presented in fig. 10. In fig. 11 
the same data are presented in the other form: mean values and confidence intervals of 
vibratory energies for each beam.  

It can be seen that EM and FEM results agree well both in mean values and in deviations. 
Relatively large discrepancy is observed at low frequencies (63 Hz), that is caused first of all 
by inaccuracy of input power determination using fragment (one beam) of the entire structure. 
In frequency range 125–500 Hz EM yields underestimated energy for distant beams (3, 4). It 
may be caused by modest accuracy of CLF statistical properties when we defined them using 
FEM: 9 samples is not large amount of sampling for so large CLF dispersion, fig. 2. 
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Fig. 10. Vibratory energy of beams 1…4 in frequency ranges: 

solid lines — EM calculations using CLF and input power generated on the base of CLF and 
input power statistical properties derived from FEM computing (100 calculations); 

 — FEM computing (10 расчетов); 
a) 31,5 Hz, b) 125 Hz, c) 500 Hz, d) 1000 Hz, e) 2000 Hz, f) 8000 Hz 
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Fig. 11. Mean values ( ) and confidence intervals for confidence probability 0,95 ( ) for 

energies of beams in whole structure from EM calculation using random CLF and input power; 
 ,   the same values from FEM calculation for 10 random modification of the structure; 

input power is obtained from one beam simulation; 
1) beam 1, 2) beam 2, 3) beam 3, 4) beam 4 
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CONCLUSIONS 

An example of CLF computing, by using FEM, for subsystems with uncertain properties is 
presented in the paper. CLF statistical properties: distribution law, mean value, dispersion — 
for two beams in junction having random length are defined. These properties are used for 
probabilistic EM calculations of structure which consists of four beams. EM results are 
compared with FEM results for the same structure in which beams lengths are random values 
as well. It was found that EM and FEM results agree well both in mean values and in 
deviations. At that, EM is comparatively inexpensive technique. 

Thus, FEM application for CLF determination allows not only to calculate CLF for 
junctions when there are no analytical solutions, but also to evaluate statistical properties of 
CLF as random values. Next, these properties are used in EM computing of complex structure 
as input data. As a result one obtains not only some mean values but possible range of results 
as well. 

Representation of final results in the form of mean value and standard deviation adequately 
describes predictable state of real structures having uncertain properties. Applied 
methodology can be used for probabilistic computing of more complex structures. 
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