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Analytical and numerical simulations are carried out in order to identify physical pa-
rameters affecting acoustic and motion control by viscoelastic piezo-electric and mate-
rial damping. Numerical simulations in terms of critical parameters, such as relaxation
functions of the structure and piezo-electric devices, aerodynamic coefficients, Mach
number, are carried out to evaluate their sensitivity to system responses, sensing and
structural control. Computational simulations indicate that light weight piezo-electric
viscoelastic devices can be effectively used to actively or passively control flight vehicle
structural response to aerodynamic noise.

INTRODUCTION

Aerodynamic noise, i. e. flow generated acoustical disturbances in skin panels, ducts, combus-
tors, helicopter and turbine blades, etc., is ever present in flight vehicles and may lead to breaches
in structural integrity as well as crew and passenger discomfort. While efficient aerodynamic de-
sign may lead to some noise reduction, its ultimate disposal can only be achieved through light
weight energy dissipation devices, such as material damping or piezo-electric generated potentials
used for either active or passive motion and sound control.

Although these noise problems are inherently stochastic, the present pilot simulations are deter-
ministic in order to reduce the number of contributing parameters and to gain fundamental insight
into the physical phenomena. The present analysis, then, deals with the union and interaction of
several areas: aeroacoustics, aeroelasticity, viscoelastic materials, piezoelectric effects and damp-
ing to produce motions of small amplitudes and decaying sound transmissions. Aerodynamic
noise generated by a variety of flows has been studied extensively since first systematically ana-
lyzed in [1] and [2] and subsequently expanded among others in [3, 4, 5, 6]. Additional extensive
aerodynamic noise treatises may be found in [7, 8, 9, 10, 11]. The theory of aeroelasticity is
well established and may be found described in detail in such classical texts as [12, 13, 14, 15].
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Analyses of viscoelastic damping effects in [16, 17, 18, 19, 20, 21, 22] have shown that energy
dissipation due to material and/or structural damping may produce either stabilizing or destabiliz-
ing contributions to the system’s self-excited dynamic motion depending on phase relationships
of the state variables. For instance, this phenomenon leads to viscoelastic flutter velocities which
are either smaller or larger than corresponding elastic ones for aerodynamically, dynamically and
geometrically identical lifting surfaces.

Piezoelectric control of elastic and viscoelastic structures has been demonstrated in numerous
publications, which have been discussed in [23]. Recent formulations and analyses of piezo-aero-
thermo-viscoelastic effects in [24, 25, 26, 27, 28] have demonstrated that sufficient power can be
generated by viscoelastic piezo-electric light weight material strips to effectively influence and
control static and dynamic motion.

Viscoelastic material properties may be found for polymers in [29] and [30] and for metals in
[31]. Piezo-viscoelastic properties are displayed in [32, 33, 34, 35].

1. ANALYSIS

In this first of a series of studies on the interaction of viscoelastic, structural and piezo-electric
damping and its interaction with aerodynamic noise, only simple idealized conditions are consid-
ered in order to gain a fundamental understanding of the governing physics and mathematics of
these phenomena. To this end, only deterministic conditions will be considered here, although
stochastic influences from material properties, temperatures, geometries, aerodynamic pressure
fluctuations are undeniably present in real physical problems. (See [36] for a literature review, and
analysis and evaluation of viscoelastic stochastic material property effects.)

It has been shown in [4] that the acoustic pressig(z,t), problem formulated in [1] and
[2] can be solved for a number of conditions. For illustrative purposes of the present paper, a
simple harmonic motion version of the pressure differential over a thin plate given by Sears [37] is
selected, where

Ap(l'l, t) =

—21p, U, az exp[—1 (o1 + k1 U, t)] oxc [z M, oy
Viemor (14 M) (¢ +1)] 14+ M,
where—b < zy < b, = x1/b,1 =+/—1, 01 = kb, k1 = w/U,, a3 is thexz-component amplitude

of the disturbance velocity and the free steam Mach numbégf,is= U,./c,. The total force per
unit length ofz, over the plate is obtained by integration w. {.is

¢+ W

FS(t) = Taspo UrbeXp [_Z kl Ur ﬂ Sc(alaMr) (2)
with
_expl—iol] [ 2 4o, M,
Selon, M) = = ==\ 1z, f( (1 + M,) ®)
for high frequencies and whefg is the complex Fresnel integral [38] defined as
A
FA) = [expr /) @

0
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For low frequencies, the Sears function becomes

Se(1, M;) = ("gf S0 + e n(@] e [101 £(00)/57) (5)
with

C=Ma/8 B = 1-M (6)
f(Mr) = (1 _ﬁr) ln( ) + ﬁ?“ ln( +ﬁr> — In2 (7)

and theJ,, are Bessel functions.
The large deformation constitutive relations at constant temperatures in curvilinear coordinates
0" for viscoelastic piezo-electric materials have been formulated in [23] as

t
A A NS ACRA N
r00) = [ . D o ®

—00

l /
/ngZE@tt’ aEazt dt—/gﬁ’TGtt aATiet)dt

t
/ l /
) = /¢?’“E(07t,t a”’““ dt' + /cb (6,,1) aEa(f,t)dt 9)

whererj are the Cauchy stress tensoys,the Green-Zerna large strain tensmﬁ,the viscoelas-
tic relaxation functionsg’;’ the electrical viscoelastic relaxation functions or the piezoelectric

stress/charge matrix;® the dielectric permittivity matrixE! the electrical field intensity vectors,
and D' the electric displacement vectors. Field equations and associated general boundary condi-
tions for displacements, stress and electric potentials have been discussed in detail in [23]. Egs. (8)
and (9) can, if desired, be reduced to linear expressions.

All relaxation functions depend on environmental conditions and in nonlinear cases on strain
rates as well, such that excluding material aging and manufacturing effectét@mnyt’) = ¢[0,t,t!
M(0,t),T(0,t),1(6,t)], with M (0, ¢! T) the moisture content; (4, ¢/ M) the temperaturel, =
{I;(6,1)} the three fundamental strain rate invariants. In particular, relaxation functions denoted
by the superscripE, but also all others, can additionally and independently be made functions
of an invariant ofE' (the viscoelastic electrical field intensity vectors), suchi®@, t) = tr{E'},
resulting in nonlinear material property electrical intensity effects or conversely exhibiting a de-
pendency on electric displacements throu§id, t) = ¢tr{D'}. The generid® represents either
of these electric invariants. (See Appendix A for further details.)

The functional dependence of any and all of the above nonlinear anisotropic relaxation functions
can in general be defined as

¢;§(07t7t,7 M? T7 j7 jE) = (10)
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where underscores indicate no summations over the affected indices, and where the parameters
My, P, Qi andRZ and the functionsB; .. are material dependent and represent distinct
functional sets for each of the dlrectlorng‘,C o gb““E ¢ and¢’;™, which must be experimen-

1
tally generated for each material and for each set of envwonméntal conditions. For linear materials,
none of the parameters are dependent on any of the invariants of strains and/or of the electric field
intensity and displacement. Additionally, for small deformations the stregsasd strainsy;
reduce to their Cartesian engineering counterpaftande;; andz; = ¢'.

Thus, linear and nonlinear isotropic and anisotropic piezoelectric viscoelastic material (PVM)
behaviors are completely defined in terms of the modeled constitutive relations, but experimen-
tal determination of the Eqgs. (10) material property functidhsemains to be carried out and
represents a formidable task.

The simplest 1-D isothermal linear viscoelastic representations of madalnd relaxation

functions¢ then become

q

E™(t) = d¢m( qu) exp(—t/m") (11a)
EP(t) = dgbp( Z P exp(—cPt/TP) (11b)
EE(t) = d¢E< ) Zgb exp(—c®t/7F) (11c)

with 7/ = 77 = 7F = oo and where the superscripts, p andE respectively refer to structural,
piezo-electric device and to piezoelectric voltage-deformation viscoelastic material properties. The
additional factor® > 0 allows for a time shift of the PVM properties relative to the structural ones,
and a value of unity indicates that the relaxation timgsare sufficient to describe any time shifts
between material and piezoelectric viscoelastic responses.

If structural damping is included, then the modulus and relaxation function representing struc-
tural viscoelastic properties must be modified to include9bfeout of phase component due to
Coulomb friction, or the leading terms must read

[Clk(Q t') +@g§ﬂ or (65" + 14] (12)

Whereg;l’f andg > 0 are the time and frequency independent structural damping coefficients
[19], [20].

In order to reduce the number of parameters to a minimum, a deterministic problem consisting
of a rigid lifting surface on a flexible support (Fig. 1) is used as a typical vehicle for the present
diagnostic fundamental sensitivity study. The joints between fodand L, exhibit structural
damping and the rodb, are viscoelastic with attached viscoelastic piezoelectric devicesLThe
rods are rigid and two degrees of freedom are possible in the form vertical and rotational motions
are possible by distinct elongations of therods. The 2 DOF configuration can be achieved by
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either placing the center of pressure off center by modifyingthg@ressure distribution of Eq. (1)
to an unsymmetric one or more simply preserving the symme¥ficand introducing unequal
viscoelastic relaxation functions or distinct cross sectional areas or both for tloels.

If one designates the vertical and rotational motions respectivel(fyand«(t), then the lift
force £ on the plate with surface ar@a b due to aerodynamic noise, aero-acoustics and motion is

h(t
L(t) = Kb + G Sin{ar—l—oz(t) + tan-t [P }
—— Ur
aerody_namic -~ _
noise e

h(t

~ F3(t)b + Cy |, + aft) + [5) (13)
where

27 po M2 2 b?
O() = W for MT <1 (14)
and

4 po, M? c3 b
CO = W for MT» >1 (15)
Similarly the aerodynamic moment is defined as
M(t) = e(t) L(t) (16)

wheree(t) is the moment arm between the center of pressure and the rotation pdint on
The uniform strain in the homogeneolgbars can be determined geometrically as

esn(t) = + L, sin [02(215)] + h(t) | o) LL12+ h(t) -

The governing relations of this linear system now become

Ihh +£[F3,O[T,Oé,il] =
—

inertia pressure + lift
; d h(t) t 4B (t)
~ t t
K, /qb(t—t’)% [ia(t’) + L—Q} i Khl/gb]f](t—t’) — (18)
0 0
force due to vis?:f)elastic Lo rods piezoele:trric force
I, + M[Fg,ar,&,h] =
| d h(t) t 4B (1)
~ t t
K, /gb(t—t')@ {j:a(t') + I, } dt' — Kag/gzﬁg(t—t/) o dt’ (19)
0 0
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D(t) = Kb / gb?(t—t’)% {m(t’) + ?] dt' + Koy / B (t — 1) dfls’) i (20)
0 0

2

where eithetD(t) or E(t) or the total displacement of thig, rods is prescribed for either control
or damping. The effective relaxation functigrdue toL, and piezoelectric device responses with
areasA;, andAp is

o) = 2 o) ZAP orlt) Gitn A = Ap, + Ap (21)

The generic aerodynamic pressure (noisg)while in the previous section was associated with
a simple harmonic pressure fluctuation of Eq. (1), can in the above relations be generated by any
other deterministic or stochastic noise source. In a more general sense, for a flexible lifting surface
on flexible or rigid supports, the unknowns become position dependenti(icgx2, t), a(xs, t)
andE(:pl, xa9,t) OF D(z1,x9,t). In either form, the three linear coupled relations (18) - (20) must
be solved simultaneously far, 2 andD or E. This can be accomplished in either the time domain
by a repetitive Runge-Kutta scheme or by finite differences, or not in real time space, but rather in
the integral transform space, by applying Laplace or Fourier transforms.

The first scheme results in the simultaneous solution of Egs. (18) — (20) together with the fol-
lowing

yn=h Y¢ = @ Yy = E

Yo = 1 Y5 = Ua (22)

Ys = Y2 Y = Us

Alternately, in order to avoid integral-differential equations, one can represent the anisotropic in-
tegral constitutive relations (8) and (9) as differential equations in the form

P AT} = Q¥{yi} — QF{E"} (23)
Pp{D'} = Qi""{7} + Q*{E"} (24)
where
Yoo i dqn
o T ik ik
P, = Za’n% jl = Zbﬂn% (25)
n=0 n=0

with similar definitions forPp and the other) operators. Note that the leading term of a@}’f
contains the structural damping contributions of Eqgs. (12), if any, resultidgfin= b\, +

10 ;. This approach results in a large number of first order simultaneous differential equations,
since in order to accurately represent real viscoelastic materials over their entire time range, the
N's need to take on values from 25 to 30. Shorter time ranges, or course, require considerably
smaller summation limits and hence much lower order DEs With N < 4 or 5 for one to three

time decades, but thd values increase nonlinearly for longer times. For materials exhibiting
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instantaneous responses to sudden loadsythalues in any one of the Egs. (23) — (25) are equal

to each other, but not necessarily equal in value from one of these relations to another [39], [40].
For instance, the 1-D equivalent DE representation of the integral relations (18) — (20) then

becomes

Zan o {Ihﬁ + E[Fg,a,h]} —

Kthn - {j:a + —} . Khlzbn dtn { } (26)

N©°

Jd g 1

;an% {Iaoz + M[Fg,a,h]} =
N° P

Ko D Vi gm dn {ia - _} B KQQan dtn { } (27)
n=0

i h (o

ga P ipy = K an = {i& + L—Q} + KD4ZbDE - {E} (28)

This now results in a set of three simultaneous DEs of ofder- 2, N° + 2 or NP + 1, which
ever is the largest. The equivalent set of Egs. (22) correspondingly changes to

W - h }/1 = [0 X1 = E\
Yo : oY : Y1 Xo : X1 (29)
Ynr = g)NT—l YNO' = YNU—1 XND = XND 1

Thus the original three high order DEs (26) to (28) have been reduced to a6et-af? 4+ N +3
simultaneous first order DEs.

As an alternate approach in the real time domain, it is possible to retain the integrals in Eqgs. (18)
— (20) and evaluate the system in terms of finite differences in time using the analysis developed in
[41].

The second solution protocol involving integral Fourier transforms (FT), provifleahde are
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time independent, leads to the following for the rigid lifting surface

“K,b C 7 o
_w21h+zw h¢+—0 C():FZWthb Zth1§Z51
L2 U’r‘ — N N—— (7 )
\ q12 ais h
K, C Z e a
1w ¢ 0¢ —w I, FrwK, ¢+ Coe 1wKa o, a =
L, U, S ng T T
g | a2 a3 =
@ (£ )
P EE _® —E
tw A p Py +10 Kp ¢, 1w Kpad,
Lo —
%:/—’ a3z ass
i asi -
( —b?:g_c(]a:r )
N——
_El
—¢ (bF3+C :r>

-~

%
D
Y

\ c3 Vs

with the caveat of Egs. (12) that the leading term of the Prony series defﬁn'mgy contain
frequency independent imaginary structural damping contributions. Egs. (30) can be reduced to
1-DOF ones by setting eithéx(t) or a(t) equal to zero and removing the corresponding relation
containing the: or ¢ term. For instance, if one considers only the vertical moti@n, then the
equations reduce to

ﬁnﬁ + 5135 =70 (31)
and
T h + @ E = D (32)

which gives the solutions for prescribét) as

P (oL —(i——;) (33)
a13 ass 13 ass

B0 _Muy (34)
ais a13

or for predetermined: (), the “simpler” set becomes

||

Cq Q13

=

(35)

aiy
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whereD is defined by Eq. (32) and with similar expressions for the other possible imposed control
conditions. Fourier transform inversions of Egs. (30) or the reduced sets of Egs. (33) and (34) or
(35) can, unfortunately, only be achieved numerically with the use of fast Fourier transforms (FFT).
For long time scales and a large number of frequency decades such computations can be extremely
computationally time consuming. Another approach is to use the inversion scheme based on the

approximationF'(t) ~ {zw?(w) developed in [42]. However, while highly simple and
t=5/1w

convenient, the method’s accuracy needs to be tested on a case by case basis in dynamic problems.
While the above relations only show electrical field intensity vectors, strains are directly trans-
latable into voltaged/, or vice versa, through the voltage-deformation (strain) constitutive rela-
tions
t/

Vi) = 5| [uBe—0x 53 [Anol— s+ e —9) 2 as b ar | (@6)

0

wherey'E is the piezoelectric creep function. The isotropic constitutive relations, Egs. (13), (14)
and (36), show that piezo-electro-viscoelasticity requires four distinct relaxation functions for ma-
terial characterization (structure, piezo device, voltage-deformation).

2. DISCUSSION OF RESULTS

For a simple harmonic input (SHIE'(t) = R{F4(:Q) exp(:27 Qt)} whereF, is the com-
plex amplitude, all responses will be simple harmonic in these linear systems, with the forcing
frequencies? (Hz). The FT of any variable then can be used to evaluate complex amplitudes from
appropriate relationships, since the FT of the exponential functions factor out. For instance, from
Eq. (36) one obtains for SHI

w2

= = =E
VA(ZW) = —ZQ/JP |:AL2¢—|-AP¢P:| EA33(227TQ) (37)
whereV (t) = R{Va(rw) exp(: 27 Q ¢)} and with similar expressions for all other variables.

As an illustrative example consider a simulation study rigid model on 2-D flexible supports
(Fig. 1) with vertical motioni(t) and angle of attack (rotation)(¢) in order to minimize the
number of contributing parameters. Fig. 2 depicts the generic viscoelastic relaxation functions of
Egs. (11) and for sensitivity studies of Egs. (34), (35) and (36), the following parametric values
were selected:
c=10® F=cf=cfF=2x10® p = 1.3kg/m?

(E1E)2 = (E1E)3 = (E1E>4 =0.9 7 =100sec

¥ =7F =7F =50sec Dy =0.0lm b= 03m

Some significant parametric variation results for an $Ht) are displayed in Figs. 3 - 7, 12
and 13. The parameters, such as the disturbance amptituoieEq. (1) & Fig. 3, stiffnessy;,
of Eg. (30) & Figs. 4 and 12, the free stream velodity of Eq. (7) & Figs. 5 and 13, and the
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piezo-electric stiffnes#’p of Eq. (30) & Fig. 6, all contribute to the piezo-electric voltage in the
low ranges of the SHI frequeciés and cease to be of any influence for> 30 Hz. A similar
statement can be made about the vertical displacentenfsEq. (30) & Figs. 12. Fig. 7 is a
composite plot oft vs. time for SHM, Eq. (37) and, = 1, and itis to be noted that the response
voltage amplitudes and periods are very sensitive to SHI frequeficies

Figs. 8 — 11 and 14 show FT voltage and displacement sensitivities for the same parameters, but
for a Heaviside step function input fdv(¢) = 0 for ¢ < 0 andD(t) = D, for ¢t > 0. The same
pattern of decreasing parametric influence for FT frequencies above 30 Hz is observed.

It must be remembered that in self-excited problems of this type more damping or stiffness or
inertia or aerodynamic noise can lead to either more or less stable configurations as the responses
are predominately influenced by the phase relations among these forces.

The pilot results and protocols developed here have applicability to naval (submarines and sur-
face ships), air and land vehicles structures and their components, as well as to space antennas
and solar sails, regarding their survivability, failure probabilities and structural control. The results
presented here are specifically for 2—D viscoelastic flutter. However, by proper definition of the
aerodynamic lift and moment functions in Eqgs. (18) and (19) the analyses can be extended to acous-
tic noise inputs. Furthermore, the analyses are also applicable to fluid and solar wind fluctuations
or meteorite impacts on large very flexible space structures or simply to the use of piezo-electric
devices to maintain shapes of space antenna dishes.

No experimental results are available for comparison purposes of these theoretical analyses and
simulations.

CONCLUSIONS

Light weight piezo-electric viscoelastic devices can be effectively used to actively or passively
control flight vehicle structural response to aerodynamic noise. This can be accomplished by pro-
viding suitable piezo-electric input voltages, by prescribed electric displacements or by controlling
the output emf through appropriate resistors. Extensions of these pilot simulations to more com-
plex structural components will be the subject of future research.
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APPENDIX A — GENRALIZED NONLINEAR KELVIN MODELS

Relaxation functions can also be derived from generalized nonlinear Kelvin models (GKM) as

a(bZ]lf(ea t> t/> i
j ot = 5 (6,1)
v
— 1 ik ik g 1
D T XD [—["FT(QJ) —"Fy (0,1 )]]} LT a—— (38)
= { " (0. 1) - - 6. )
where
t .
; " "M, T, I,IE
nP}Z’lﬁ(ea t) = / _lds and n)\(97 t/) — 77((9, tyt ) ) U '7 _ ) (39)
VA "B(O,t, ¢, M, T, I, IE)
For isothermal conditions and linear nonhomogeneous materials, each summation term in Egs. (38)
reduces to
A 1 (t—1)
neikg, ¢t = - exp [— - ] (40)
! " (6) A5 (0)

and results in convolution integral constitutive relations.
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