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Analytical and numerical simulations are carried out in order to identify physical pa-
rameters affecting acoustic and motion control by viscoelastic piezo-electric and mate-
rial damping. Numerical simulations in terms of critical parameters, such as relaxation
functions of the structure and piezo-electric devices, aerodynamic coefficients, Mach
number, are carried out to evaluate their sensitivity to system responses, sensing and
structural control. Computational simulations indicate that light weight piezo-electric
viscoelastic devices can be effectively used to actively or passively control flight vehicle
structural response to aerodynamic noise.

INTRODUCTION

Aerodynamic noise, i. e. flow generated acoustical disturbances in skin panels, ducts, combus-
tors, helicopter and turbine blades, etc., is ever present in flight vehicles and may lead to breaches
in structural integrity as well as crew and passenger discomfort. While efficient aerodynamic de-
sign may lead to some noise reduction, its ultimate disposal can only be achieved through light
weight energy dissipation devices, such as material damping or piezo-electric generated potentials
used for either active or passive motion and sound control.

Although these noise problems are inherently stochastic, the present pilot simulations are deter-
ministic in order to reduce the number of contributing parameters and to gain fundamental insight
into the physical phenomena. The present analysis, then, deals with the union and interaction of
several areas: aeroacoustics, aeroelasticity, viscoelastic materials, piezoelectric effects and damp-
ing to produce motions of small amplitudes and decaying sound transmissions. Aerodynamic
noise generated by a variety of flows has been studied extensively since first systematically ana-
lyzed in [1] and [2] and subsequently expanded among others in [3, 4, 5, 6]. Additional extensive
aerodynamic noise treatises may be found in [7, 8, 9, 10, 11]. The theory of aeroelasticity is
well established and may be found described in detail in such classical texts as [12, 13, 14, 15].
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Analyses of viscoelastic damping effects in [16, 17, 18, 19, 20, 21, 22] have shown that energy
dissipation due to material and/or structural damping may produce either stabilizing or destabiliz-
ing contributions to the system’s self-excited dynamic motion depending on phase relationships
of the state variables. For instance, this phenomenon leads to viscoelastic flutter velocities which
are either smaller or larger than corresponding elastic ones for aerodynamically, dynamically and
geometrically identical lifting surfaces.

Piezoelectric control of elastic and viscoelastic structures has been demonstrated in numerous
publications, which have been discussed in [23]. Recent formulations and analyses of piezo-aero-
thermo-viscoelastic effects in [24, 25, 26, 27, 28] have demonstrated that sufficient power can be
generated by viscoelastic piezo-electric light weight material strips to effectively influence and
control static and dynamic motion.

Viscoelastic material properties may be found for polymers in [29] and [30] and for metals in
[31]. Piezo-viscoelastic properties are displayed in [32, 33, 34, 35].

1. ANALYSIS

In this first of a series of studies on the interaction of viscoelastic, structural and piezo-electric
damping and its interaction with aerodynamic noise, only simple idealized conditions are consid-
ered in order to gain a fundamental understanding of the governing physics and mathematics of
these phenomena. To this end, only deterministic conditions will be considered here, although
stochastic influences from material properties, temperatures, geometries, aerodynamic pressure
fluctuations are undeniably present in real physical problems. (See [36] for a literature review, and
analysis and evaluation of viscoelastic stochastic material property effects.)

It has been shown in [4] that the acoustic pressure,∆p(x, t), problem formulated in [1] and
[2] can be solved for a number of conditions. For illustrative purposes of the present paper, a
simple harmonic motion version of the pressure differential over a thin plate given by Sears [37] is
selected, where

∆p(x1, t) =
−2 ı ρo Ur a3 exp[−ı (σ1 + k1 Ur t)]√

[ı π σ1 (1 +Mr)(ζ + 1)]
exp

[
ıMr σ1

1 +Mr

(ζ + 1)

]
(1)

where−b ≤ x1 ≤ b, ζ = x1/b, ı =
√
−1, σ1 = k1b, k1 = ω/Ur, a3 is thex3-component amplitude

of the disturbance velocity and the free steam Mach number isMr = Ur/c0. The total force per
unit length ofx2 over the plate is obtained by integration w. r. t.x1 is

F3(t) = π a3 ρo Ur b exp [−ı k1 Ur t] Sc(σ1,Mr) (2)

with

Sc(σ1,Mr) =
exp [−ı σ1]

σ1 π

√
2ı

Mr

F

(√
4σ1Mr

π(1 + Mr)

)
(3)

for high frequencies and whereF is the complex Fresnel integral [38] defined as

F(A) =

A∫
0

exp(ı π ζ̂2/2) dζ̂ (4)
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For low frequencies, the Sears function becomes

Sc(σ1,Mr) =
S(σ1/β

2
r )

βr

[
Jo(ζ̃) + ı J1(ζ̃)

]
exp

[
−ı σ1 f(Mr)/β

2
r

]
(5)

with

ζ̃ = M2
r σ1/β

2
r βr =

√
1 −M2

r (6)

f(Mr) = (1 − βr) ln(Mr) + βr ln(1 + βr) − ln 2 (7)

and theJn are Bessel functions.
The large deformation constitutive relations at constant temperatures in curvilinear coordinates

θi for viscoelastic piezo-electric materials have been formulated in [23] as

τ i
j(θ, t) =

t∫
−∞

φik
jl (θ, t, t

′)
∂γl

k(θ, t
′)

∂t′
dt′ (8)

−
t∫

−∞

φiE
jl (θ, t, t′)

∂Êl(θ, t′)

∂t′
dt′ −

t∫
−∞

φiT
jl (θ, t, t′)

∂AT (θ, t′)

∂t′
dt′

Di(θ, t′) =

t∫
−∞

φikE
l (θ, t, t′)

∂γl
k(θ, t

′)

∂t′
dt′ +

t∫
−∞

φiE
l (θ, t, t′)

∂Êl(θ, t′)

∂t′
dt′ (9)

whereτ i
j are the Cauchy stress tensors,γle

k the Green-Zerna large strain tensors,φik
jl the viscoelas-

tic relaxation functions,φiE
jl the electrical viscoelastic relaxation functions or the piezoelectric

stress/charge matrix,φiE
l the dielectric permittivity matrix,̂El the electrical field intensity vectors,

andDi the electric displacement vectors. Field equations and associated general boundary condi-
tions for displacements, stress and electric potentials have been discussed in detail in [23]. Eqs. (8)
and (9) can, if desired, be reduced to linear expressions.

All relaxation functions depend on environmental conditions and in nonlinear cases on strain
rates as well, such that excluding material aging and manufacturing effects anyφ(θ, t, t′) = φ[θ, t, t,′

M(θ, t′), T (θ, t′), İ(θ, t′)], with M(θ, t,′ T ) the moisture content,T (θ, t,′M) the temperature,̇I =
{İi(θ, t)} the three fundamental strain rate invariants. In particular, relaxation functions denoted
by the superscriptE, but also all otherφs, can additionally and independently be made functions
of an invariant ofÊl (the viscoelastic electrical field intensity vectors), such asIE

e (θ, t) = tr{Êl},
resulting in nonlinear material property electrical intensity effects or conversely exhibiting a de-
pendency on electric displacements throughIE

d (θ, t) = tr{Dl}. The genericIE represents either
of these electric invariants. (See Appendix A for further details.)

The functional dependence of any and all of the above nonlinear anisotropic relaxation functions
can in general be defined as

φik
jl (θ, t, t

′,M, T, İ, İE) = (10)
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Viscoelastic damping and piezo-electric control of structures subjected to aerodynamic noise



Electronic Journal<<Technical Acoustics>> 2006, 18 4 of 15

M
ik
jl∑

m=0

P
ik
jl∑

p=0

Q
ik
jl∑

q=0

R
ik
jl∑

r=0

Bik
jlmpqr(θ, t, t

′,M, T ) (İ1 − 3)m (İ2 − 3)p (İ3 − 1)q (İE − 3)r

where underscores indicate no summations over the affected indices, and where the parameters
Mik

jl , Pik
jl , Qik

jl andRik
jl and the functionsBik

jlmpqr are material dependent and represent distinct
functional sets for each of the directionalφik

jl , φ
iE
jl , φikE

l , φiE
j andφikT

jl , which must be experimen-
tally generated for each material and for each set of environmental conditions. For linear materials,
none of the parameters are dependent on any of the invariants of strains and/or of the electric field
intensity and displacement. Additionally, for small deformations the stressesτ i

j and strainsγi
j

reduce to their Cartesian engineering counterpartsσij andεij andxi = θi.
Thus, linear and nonlinear isotropic and anisotropic piezoelectric viscoelastic material (PVM)

behaviors are completely defined in terms of the modeled constitutive relations, but experimen-
tal determination of the Eqs. (10) material property functionsB remains to be carried out and
represents a formidable task.

The simplest 1-D isothermal linear viscoelastic representations of moduliE and relaxation
functionsφ then become

Em(t) =
dφm(t)

dt
=

Nm∑
n=0

φm
n exp(−t/τm

n ) (11a)

Ep(t) =
dφp(t)

dt
=

Np∑
n=0

φp
n exp(−cp t/τp

n ) (11b)

EE(t) =
dφE(t)

dt
=

NE∑
n=0

φE
n exp(−cE t/τE

n ) (11c)

with τm
0 = τp

0 = τE
0 = ∞ and where the superscriptsm, p andE respectively refer to structural,

piezo-electric device and to piezoelectric voltage-deformation viscoelastic material properties. The
additional factorcE > 0 allows for a time shift of the PVM properties relative to the structural ones,
and a value of unity indicates that the relaxation timesτE

n are sufficient to describe any time shifts
between material and piezoelectric viscoelastic responses.

If structural damping is included, then the modulus and relaxation function representing struc-
tural viscoelastic properties must be modified to include the90◦ out of phase component due to
Coulomb friction, or the leading terms must read[

0Cik
jl (θ, t

′) + ı gik
jl

]
or [φm

0 + ı g] (12)

wheregik
jl and g ≥ 0 are the time and frequency independent structural damping coefficients

[19], [20].
In order to reduce the number of parameters to a minimum, a deterministic problem consisting

of a rigid lifting surface on a flexible support (Fig. 1) is used as a typical vehicle for the present
diagnostic fundamental sensitivity study. The joints between rodsL1 andL2 exhibit structural
damping and the rodsL2 are viscoelastic with attached viscoelastic piezoelectric devices. TheL1

rods are rigid and two degrees of freedom are possible in the form vertical and rotational motions
are possible by distinct elongations of theL2 rods. The 2 DOF configuration can be achieved by

C. E. Beldica, H. H. Hilton and S. Yi
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either placing the center of pressure off center by modifying the∆p pressure distribution of Eq. (1)
to an unsymmetric one or more simply preserving the symmetric∆p and introducing unequal
viscoelastic relaxation functions or distinct cross sectional areas or both for theL2 rods.

If one designates the vertical and rotational motions respectively byh(t) andα(t), then the lift
forceL on the plate with surface area2 c b due to aerodynamic noise, aero-acoustics and motion is

L(t) = F3(t) b︸ ︷︷ ︸
aerodynamic

noise

+ C0 sin

{
αr + α(t) + tan−1

[
ḣ(t)

Ur

]}
︸ ︷︷ ︸

lift

' F3(t) b + C0

[
αr + α(t) +

ḣ(t)

Ur

]
(13)

where

C0 =
2π ρoM

2
r c

2
0 b

2√
1−M2

r

for Mr < 1 (14)

and

C0 =
4 ρoM

2
r c

2
0 b

2√
M2

r − 1
for Mr > 1 (15)

Similarly the aerodynamic moment is defined as

M(t) = e(t) L(t) (16)

wheree(t) is the moment arm between the center of pressure and the rotation point onL1.
The uniform strain in the homogeneousL2 bars can be determined geometrically as

ε33(t) =
±L1 sin [α(t)] + h(t)

L2

' ±α(t)L1 + h(t)

L2

(17)

The governing relations of this linear system now become

Ih ḧ︸︷︷︸
inertia

+ L[F3, αr, α, ḣ]︸ ︷︷ ︸
pressure+ lift

=

Kh

t∫
0

φ̃(t− t′)
d

dt′

[
±α(t′) +

h(t′)

L2

]
dt′

︸ ︷︷ ︸
force due to viscoelastic L2 rods

− Kh1

t∫
0

φE
1 (t− t′)

dÊ(t′)

dt′
dt′

︸ ︷︷ ︸
piezoelectric force

(18)

Iα α̈ + M[F3, αr, α, ḣ] =

Kα

t∫
0

φ̃(t− t′)
d

dt′

[
±α(t′) +

h(t′)

L2

]
dt′ − Kα2

t∫
0

φE
2 (t− t′)

dÊ(t′)

dt′
dt′ (19)

C. E. Beldica, H. H. Hilton and S. Yi
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D(t) = KD

t∫
0

φE
3 (t− t′)

d

dt′

[
±α(t′) +

h(t′)

L2

]
dt′ + KD4

t∫
0

φE
4 (t− t′)

dÊ(t′)

dt′
dt′ (20)

where eitherD(t) or Ê(t) or the total displacement of theL2 rods is prescribed for either control
or damping. The effective relaxation functioñφ due toL2 and piezoelectric device responses with
areasAL2 andAP is

φ̃(t) =
AL2 φ(t) + AP φP (t)

A
with A = AL2 + AP (21)

The generic aerodynamic pressure (noise)F3, while in the previous section was associated with
a simple harmonic pressure fluctuation of Eq. (1), can in the above relations be generated by any
other deterministic or stochastic noise source. In a more general sense, for a flexible lifting surface
on flexible or rigid supports, the unknowns become position dependent, i. e.h(x1, x2, t), α(x2, t)
andÊ(x1, x2, t) orD(x1, x2, t). In either form, the three linear coupled relations (18) - (20) must
be solved simultaneously forα, h andD or Ê. This can be accomplished in either the time domain
by a repetitive Runge-Kutta scheme or by finite differences, or not in real time space, but rather in
the integral transform space, by applying Laplace or Fourier transforms.

The first scheme results in the simultaneous solution of Eqs. (18) – (20) together with the fol-
lowing

y1 = h y4 = α y7 = Ê
y2 = ẏ1 y5 = ẏ4

y3 = ẏ2 y6 = ẏ5

(22)

Alternately, in order to avoid integral-differential equations, one can represent the anisotropic in-
tegral constitutive relations (8) and (9) as differential equations in the form

Pτ{τ i
j} = Q̃ik

jl{γl
k} − QiE

jl {Êl} (23)

PD{Di} = QikE
l {γl

k} + QiE
l {Êl} (24)

where

Pτ =
Nτ∑
n=0

aτ
n

dn

dtn
Qik

jl =

N
ik
jl∑

n=0

bikjln
dn

dtn
(25)

with similar definitions forPD and the otherQ operators. Note that the leading term of anyQ̃ik
jl

contains the structural damping contributions of Eqs. (12), if any, resulting inbikilN = bikilNR +
ı bikilNI . This approach results in a large number of first order simultaneous differential equations,
since in order to accurately represent real viscoelastic materials over their entire time range, the
Ns need to take on values from 25 to 30. Shorter time ranges, or course, require considerably
smaller summation limits and hence much lower order DEs with1 ≤ N ≤ 4 or 5 for one to three
time decades, but theN values increase nonlinearly for longer times. For materials exhibiting

C. E. Beldica, H. H. Hilton and S. Yi
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instantaneous responses to sudden loads, theN values in any one of the Eqs. (23) – (25) are equal
to each other, but not necessarily equal in value from one of these relations to another [39], [40].

For instance, the 1-D equivalent DE representation of the integral relations (18) – (20) then
becomes

Nτ∑
n=0

aτ
n

dn

dtn

{
Ih ḧ + L[F3, α, ḣ]

}
=

Kh

Nτ∑
n=0

bτn
dn

dtn

{
±α +

h

L2

}
− Kh1

Nτ∑
n=0

bτEn
dn

dtn

{
Ê
}

(26)

Nσ∑
n=0

aσ
n

dn

dtn

{
Iα α̈ + M[F3, α, ḣ]

}
=

Kα

Nσ∑
n=0

bσn
dn

dtn

{
±α +

h

L2

}
− Kα2

Nσ∑
n=0

bσE
n

dn

dtn

{
Ê
}

(27)

ND∑
n=0

aD
n

dn

dtn
{D} = KD

Nσ∑
n=0

bDn
dn

dtn

{
±α +

h

L2

}
+ KD4

ND∑
n=0

bDE
n

dn

dtn

{
Ê
}

(28)

This now results in a set of three simultaneous DEs of orderN τ + 2, Nσ + 2 or ND + 1, which
ever is the largest. The equivalent set of Eqs. (22) correspondingly changes to

y1 = h Y1 = α X1 = Ê

y2 = ẏ1 Y2 = Ẏ1 X2 = Ẋ1
...

...
...

y
Nτ = ẏ

Nτ−1
Y

Nσ = Ẏ
Nσ−1

X
ND

= Ẋ
ND−1

(29)

Thus the original three high order DEs (26) to (28) have been reduced to a set ofN τ +Nσ +ND +3
simultaneous first order DEs.

As an alternate approach in the real time domain, it is possible to retain the integrals in Eqs. (18)
– (20) and evaluate the system in terms of finite differences in time using the analysis developed in
[41].

The second solution protocol involving integral Fourier transforms (FT), providedUr ande are

C. E. Beldica, H. H. Hilton and S. Yi
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time independent, leads to the following for the rigid lifting surface

a11︷ ︸︸ ︷
−ω2 Ih + ı ω

−Kh φ̃

L2

+
C0

Ur

 C0 ∓ ı ω Kh φ̃︸ ︷︷ ︸
a12

ı ω Kh1 φ
E

1︸ ︷︷ ︸
a13

ı ω

−Kα φ̃

L2

+
C0 e

Ur


︸ ︷︷ ︸

a21

−ω2 Iα ∓ ı ω Kα φ̃+ C0 e︸ ︷︷ ︸
a22

ı ω Kα2 φ
E

2︸ ︷︷ ︸
a23

ı ω KD φ
E

3

L2︸ ︷︷ ︸
a31

±ı ω KD φ
E

3︸ ︷︷ ︸
a32

ı ω KD4 φ
E

4︸ ︷︷ ︸
a33





h

α

Ê


=



−b F 3 − C0 αr︸ ︷︷ ︸
c1

−e
(
b F 3 + C0 αr

)
︸ ︷︷ ︸

c2

D︸︷︷︸
c3


(30)

with the caveat of Eqs. (12) that the leading term of the Prony series definingφ̃ may contain
frequency independent imaginary structural damping contributions. Eqs. (30) can be reduced to
1-DOF ones by setting eitherh(t) or α(t) equal to zero and removing the corresponding relation
containing thëh or α̈ term. For instance, if one considers only the vertical motionh(t), then the
equations reduce to

a11 h + a13 Ê = c1 (31)

and

a31 h + a33 Ê = D (32)

which gives the solutions for prescribedD(t) as

h =

(
c1
a13

− D

a33

)
÷
(
a11

a13

− a31

a33

)
(33)

Ê =
c1
a13

− a11

a13

h (34)

or for predetermined̂E(t), the “simpler” set becomes

h =
c1 − a13 Ê

a11

(35)

C. E. Beldica, H. H. Hilton and S. Yi
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whereD is defined by Eq. (32) and with similar expressions for the other possible imposed control
conditions. Fourier transform inversions of Eqs. (30) or the reduced sets of Eqs. (33) and (34) or
(35) can, unfortunately, only be achieved numerically with the use of fast Fourier transforms (FFT).
For long time scales and a large number of frequency decades such computations can be extremely
computationally time consuming. Another approach is to use the inversion scheme based on the

approximationF (t) ≈
[
ı ω F (ω)

]
t=.5/ı ω

developed in [42] . However, while highly simple and

convenient, the method’s accuracy needs to be tested on a case by case basis in dynamic problems.
While the above relations only show electrical field intensity vectors, strains are directly trans-

latable into voltagesV, or vice versa, through the voltage-deformation (strain) constitutive rela-
tions

V(t) =
1

A

 t∫
0

ψE
P (t− t′) × ∂

∂t′


t′∫

0

[
AL2 φ(t− s) + AP φ

E
P (t− s)

] ∂ε33(s)
∂s

ds

 dt′

 (36)

whereψE
P is the piezoelectric creep function. The isotropic constitutive relations, Eqs. (13), (14)

and (36), show that piezo-electro-viscoelasticity requires four distinct relaxation functions for ma-
terial characterization (structure, piezo device, voltage-deformation).

2. DISCUSSION OF RESULTS

For a simple harmonic input (SHI),F (t) = <{FA(ıΩ) exp(ı 2πΩ t)} whereFA is the com-
plex amplitude, all responses will be simple harmonic in these linear systems, with the forcing
frequenciesΩ (Hz). The FT of any variable then can be used to evaluate complex amplitudes from
appropriate relationships, since the FT of the exponential functions factor out. For instance, from
Eq. (36) one obtains for SHI

VA(ı ω) = −ω
2

A
ψP

[
AL2 φ+ AP φ

E

P

]
εA33(ı 2πΩ) (37)

whereV (t) = <{VA(ı ω) exp(ı 2πΩ t)} and with similar expressions for all other variables.
As an illustrative example consider a simulation study rigid model on 2–D flexible supports

(Fig. 1) with vertical motionh(t) and angle of attack (rotation)α(t) in order to minimize the
number of contributing parameters. Fig. 2 depicts the generic viscoelastic relaxation functions of
Eqs. (11) and for sensitivity studies of Eqs. (34), (35) and (36), the following parametric values
were selected:
c = 103 cE2 = cE3 = cE4 = 2× 103 ρ = 1.3 kg/m3

E∞ = 0.1 E0 = 1 (EE
∞)2 = (EE

∞)3 = (EE
∞)4 = 0.5

(EE
1 )2 = (EE

1 )3 = (EE
1 )4 = 0.9 τ = 100 sec

τE
2 = τE

3 = τE
4 = 50 sec DA = 0.01 m b = 0.3 m

Some significant parametric variation results for an SHID(t) are displayed in Figs. 3 – 7, 12
and 13. The parameters, such as the disturbance amplitudea3 of Eq. (1) & Fig. 3, stiffnessKh

of Eq. (30) & Figs. 4 and 12, the free stream velocityUr of Eq. (7) & Figs. 5 and 13, and the
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piezo-electric stiffnessKD of Eq. (30) & Fig. 6, all contribute to the piezo-electric voltage in the
low ranges of the SHI frequeciesΩ and cease to be of any influence forΩ > 30 Hz. A similar
statement can be made about the vertical displacementsh of Eq. (30) & Figs. 12. Fig. 7 is a
composite plot of̂E vs. time for SHM, Eq. (37) andDA = 1, and it is to be noted that the response
voltage amplitudes and periods are very sensitive to SHI frequenciesΩ.

Figs. 8 – 11 and 14 show FT voltage and displacement sensitivities for the same parameters, but
for a Heaviside step function input forD(t) = 0 for t ≤ 0 andD(t) = DA for t ≥ 0. The same
pattern of decreasing parametric influence for FT frequencies above 30 Hz is observed.

It must be remembered that in self-excited problems of this type more damping or stiffness or
inertia or aerodynamic noise can lead to either more or less stable configurations as the responses
are predominately influenced by the phase relations among these forces.

The pilot results and protocols developed here have applicability to naval (submarines and sur-
face ships), air and land vehicles structures and their components, as well as to space antennas
and solar sails, regarding their survivability, failure probabilities and structural control. The results
presented here are specifically for 2–D viscoelastic flutter. However, by proper definition of the
aerodynamic lift and moment functions in Eqs. (18) and (19) the analyses can be extended to acous-
tic noise inputs. Furthermore, the analyses are also applicable to fluid and solar wind fluctuations
or meteorite impacts on large very flexible space structures or simply to the use of piezo-electric
devices to maintain shapes of space antenna dishes.

No experimental results are available for comparison purposes of these theoretical analyses and
simulations.

CONCLUSIONS

Light weight piezo-electric viscoelastic devices can be effectively used to actively or passively
control flight vehicle structural response to aerodynamic noise. This can be accomplished by pro-
viding suitable piezo-electric input voltages, by prescribed electric displacements or by controlling
the output emf through appropriate resistors. Extensions of these pilot simulations to more com-
plex structural components will be the subject of future research.
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APPENDIX A – GENRALIZED NONLINEAR KELVIN MODELS

Relaxation functions can also be derived from generalized nonlinear Kelvin models (GKM) as

∂φik
jl (θ, t, t

′)

∂t′
= 0Cik

jl (θ, t
′)

+

N
ik
jl∑

n=1

{
1

nηik
jl (θ, t

′)
exp

[
−[nF ik

jl (θ, t)− nF ik
jl (θ, t′)]

]}
+

1

N
il
jk+1

ηil
jk(θ, t

′)
(38)

where

nF il
jk(θ, t) =

t∫
ds

nλil
jk(θ, s)

and nλ(θ, t′) =
nη(θ, t, t′,M, T, İ, İE)
nE(θ, t, t′,M, T, İ, İE)

(39)

For isothermal conditions and linear nonhomogeneous materials, each summation term in Eqs. (38)
reduces to

nφik
jl (θ, t, t

′) =
1

nηik
jl (θ)

exp

[
− (t− t′)

nλik
jl (θ)

]
(40)

and results in convolution integral constitutive relations.

C. E. Beldica, H. H. Hilton and S. Yi
Viscoelastic damping and piezo-electric control of structures subjected to aerodynamic noise



Electronic Journal<<Technical Acoustics>> 2006, 18 14 of 15

Fig. 1 Rigid Airfoil on

Viscoelastic Supports

0.0

0.5

1.0

1.5

-10 -8 -6 -4 -2 0 2

Fig. 2 
PIEZOELECTRIC  RELAXATION  MODULI

E_beam

E
1
 log(c)=-1

E
2
 log(c)=-1.18

E
3
 log(c)=1

E
4
 log(c)=-1.18

E
5
 log(c)=-1

E
6
 log(c)=-1.18

E
7
 log(c)=1

E
8
 log(c)=1.18

R
E
LA

X
A

TI
O

N
  

M
O

D
U

LI

LOG  (TIME)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20 25 30 35

Fig. 3  INFLUENCE  OF  a
3
  ON  VOLTAGES  (SHM)

1 m/sec

10 m/sec

20 m/sec

30 m/sec

1 m/sec

10 m/sec

20 m/sec

30 m/sec

RE
A

L 
 A

M
PL

IT
U

D
E 

 E
h

a
t  (

vo
lts

/m
)

IM
A

G
  A

M
PLITU

D
E  E

h
a

t   (vo
lts/m

)

FREQUENCY  !  (Hz)

REAL  PART IMAG  PART

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 5 10 15 20 25 30 35

Fig. 4  INFLUENCE  OF  K
h
  ON  VOLTAGES  (SHM)

K
h
=1E2

K
h
=1E3

K
h
=1E4

K
h
=1E5

K
h
=1E6

K
h
=1E2

K
h
=1E3

K
h
=1E4

K
h
=1E5

K
h
=1E6

RE
A

L 
 A

M
PL

IT
U

D
E 

 E
h

a
t  (

vo
lts

/m
)

IM
A

G
  A

M
PLITU

D
E  E

h
a

t   (vo
lts/m

)

FREQUENCY  !  (Hz)

REAL  PART IMAG  PART

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0 5 10 15 20 25 30 35

Fig. 5  INFLUENCE  OF  U
r
  ON  VOLTAGES  (SHM)

100 m/sec

150 m/sec

200 m/sec

250 m/sec

300 m/sec

100 m/sec

150 m/sec

200 m/sec

250 m/sec

300 m/sec

RE
A

L 
 A

M
PL

IT
U

D
E 

 E
h

a
t  (

vo
lts

/m
) IM

A
G

  A
M

PLITU
D

E  E
h

a
t   (vo

lts/m
)

FREQUENCY  !  (Hz)

REAL  PART IMAG  PART

-0.200

-0.167

-0.133

-0.100

-0.067

-0.033

0.000

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0 5 10 15 20 25 30 35

Fig. 6  INFLUENCE  OF  K
D
  ON  VOLTAGES  (SHM)

K
D
=1E2

K
D
=1E3

K
D
=1E4

K
D
=1E5

K
D
=1E6

K
D
=1E2

K
D
=1E3

K
D
=1E4

K
D
=1E5

K
D
=1E6

RE
A

L 
 A

M
PL

IT
U

D
E 

 E
h

a
t  (

vo
lts

/m
) IM

A
G

  A
M

PLITU
D

E  E
h

a
t   (vo

lts/m
)

FREQUENCY  !  (Hz)

REAL  PART IMAG  PART

C. E. Beldica, H. H. Hilton and S. Yi
Viscoelastic damping and piezo-electric control of structures subjected to aerodynamic noise



Electronic Journal<<Technical Acoustics>> 2006, 18 15 of 15

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0 0.5 1 1.5 2

Fig. 7  HARMONIC  INPUT / OUTPUT  VOLTAGES

! = 1 Hz
! = 15 Hz
! = 30 Hz

 E
h

a
t  (

vo
lts

/m
)

TIME (sec)

INPUT  FREQUENCY

a
3
 = 10 m/sec

K
h
 = 100

K
D
 = 1 E 4

U
r
  = 100 m/sec

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 5 10 15 20 25 30 35

Fig. 8  INFLUENCE  OF  a
3
  ON  FT  VOLTAGES  (STEP)

1 m / sec

10 m /sec

100 m / sec

500 m / sec

1 m / sec

10 m /sec

100 m / sec

500 m / sec

R
E
A

L 
 E

h
a

t  
(v

o
lt
s/

m
)

IM
A

G
  E

h
a

t   (v
o

lts/m
)

FREQUENCY  !  (Hz)

REAL  PART IMAG  PART

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0 5 10 15 20 25 30 35

Fig. 9  INFLUENCE  OF  k
1
   =  ! / U

r
  ON  FT  VOLTAGES  (STEP)

k
1
 = .01

k
1
 = .1

k
1
 = 1

k
1
 = 5

k
1
 = .01

k
1
 = .1

k
1
 = 1

k
1
 = 5

RE
A

L 
E h

a
t  (

vo
lts

/m
) IM

A
G

 E
h

a
t   (vo

lts/m
)

FREQUENCY  !  (Hz)

REAL  PART IMAG  PART

-0.08

-0.06

-0.04

-0.02

0

0.02

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 5 10 15 20 25 30 35

Fig. 10  INFLUENCE  OF  K
h
  ON  FT  VOLTAGES  (STEP)

K
h
 = 1E2

K
h
 = 1E3

K
h
 = 1E4

K
h
 = 1E5

K
h
 = 1E6

K
h
 = 1E2

K
h
 = 1E3

K
h
 = 1E4

K
h
 = 1E5

K
h
 = 1E6RE

A
L 

 E
h

a
t  (

vo
lts

/m
) IM

A
G

  E
h

a
t   (vo

lts/m
)

FREQUENCY  !  (Hz)

REAL  PART IMAG  PART

-0.050

-0.040

-0.030

-0.020

-0.010

0.000

-0.005

0

0.005

0.01

0.015

0.02

0 5 10 15 20 25 30 35

Fig. 11  INFLUENCE  OF  U
r
  ON  FT  VOLTAGES  (STEP)

100 m/sec

150 m/sec

200 m/sec

250 m/sec

300 m/sec

100 m/sec

150 m/sec

200 m/sec

250 m/sec

300 m/sec

RE
A

L 
 E

h
a

t  (
vo

lts
/m

) IM
A

G
  E

h
a

t   (vo
lts/m

)

FREQUENCY  !  (Hz)

REAL  PART IMAG  PART

0

0.01

0.02

0.03

0.04

0.05

0.06

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0 5 10 15 20 25 30 35

Fig. 12  INFLUENCE  OF  K
h
  ON  DISPLACEMENTS  (SHM)

K
h
=1E2

K
h
=1E3

K
h
=1E4

K
h
=1E5

K
h
=1E6

K
h
=1E2

K
h
=1E3

K
h
=1E4

K
h
=1E5

K
h
=1E6

RE
A

L 
 A

M
PL

IT
U

D
E 

 h
  (

m
) IM

A
G

  A
M

PLITU
D

E  h  (m
)

FREQUENCY  !  (Hz)

REAL  PART IMAG  PART

0

0.05

0.1

0.15

0.2

0.25

0.3

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20 25 30 35

Fig. 13  INFLUENCE  OF  U
r
  ON  DISPLACEMENTS  (SHM)

100 m/sec

150 m/sec

200 m/sec

250 m/sec

300 m/sec

100 m/sec

150 m/sec

200 m/sec

250 m/sec

300 m/sec

RE
A

L 
 A

M
PL

IT
U

D
E 

 h
  (

m
) IM

A
G

  A
M

PLITU
D

E  h  (m
)

FREQUENCY  !  (Hz)

REAL  PART IMAG  PART

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0 5 10 15 20 25 30 35

Fig. 14  INFLUENCE  OF  K
h
  ON  FT  DISPLACEMENTS  (STEP)

K
h
 = 1E2

K
h
 = 1E3

K
h
 = 1E4

K
h
 = 1E5

K
h
 = 1E6

K
h
 = 1E2

K
h
 = 1E3

K
h
 = 1E4

K
h
 = 1E5

K
h
 = 1E6

R
E
A

L 
 h

  
(m

)

IM
A

G
  h

  (m
)

FREQUENCY  !  (Hz)

REAL  PART IMAG  PART

C. E. Beldica, H. H. Hilton and S. Yi
Viscoelastic damping and piezo-electric control of structures subjected to aerodynamic noise


