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Both compact Green's functions and asymptotic expansions are widely used to 
analytically predict sound generated by low Mach number ( 1<<M ) fluid-dynamic 
sources, where the acoustic compactness of the source region is satisfied. By 
mathematically investigating the detailed assumptions involved in each of the two 
methods and by using two classical examples of flow noise problems, it is shown 
that the applicability of compact Green's function is restricted to a receiver 
location, r, at the acoustic far-field with / or cω →∞  where ω  is the frequency and 

 is the speed of sound, and that the solution from matched asymptotic expansions 
can be applied less restrictively starting at 

oc
/ ~ 1or cω . Significant differences 

between the two solutions are shown when / ~ 1or cω . In the acoustic far-field, the 
solutions from the two methods are analytically proved identical. 

1. INTRODUCTION 

After Lighthill [1, 2], sound generated by fluid flow can be directly related to the near-field 
fluid dynamic parameters. Using Lighthill's analogy, two approaches can be developed to 
analytically predict low-Mach-number-flow sound: compact Green's functions (CGF) and 
matched asymptotic expansions (MAE). Examples of using these two methods include (but 
are not limited to) vortex related far-field sound (e.g., [3–7]). Both of the methods take 
advantage of the low-Mach-number condition and the acoustic compactness of the source to 
facilitate the mathematical analysis. However, there can be confusion regarding to the 
applicability and limits of these two methods.  Particularly, in many cases the consistency of 
the results from these two methods is not readily obvious, a situation that deems a careful 
investigation. It is relatively clear that in using MAE, the spatial dimensions in the acoustic 
region are reduced with a factor of Mach number (M) to match the near-field expansions, but 
it is not the case that the CGF is truncated to the same order of Mach number. The goal of this 
paper is to investigate mathematically the detailed assumptions involved in each of the two 
methods and to sort out the compatibility and, at the same time, the differences between them. 
Two classical examples, flow over an oscillating cylinder and a vortex outside a cylinder, are 
used to demonstrate the comparison procedures. Sample results are calculated for explanation 
of the analytical solutions. 
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2. COMPARISON OF ASSUMPTIONS EMPLOYED IN THE TWO METHODS 

In both of the methods, the flow is low Mach number, 1<<M , where ,  is 

the characteristic velocity of the near-field, and  is the speed of sound. Since both of the 

methods are used for acoustic calculation, the far-field condition must be satisfied, which is 
 where r is the distance of the receiver location from the source, and l is the 

characteristic length of the source. The acoustic compactness of the source is also required in 
both MAE and CGF. That is, 

oo cUM /= oU

oc

lr >>

/ ~ ( )ol c O M 1ω << , (1)

where ω is the frequency and O means “the order of”. 
In the MAE method, to match the near-field flow with the acoustic field, the spatial 

dimensions in the acoustic field is usually reduced in the order of M, i.e., , where xii MxX = i 

is the receiver location in the acoustic field, and Xi is the rescaled outer spatial dimensions to 
match the inner flow solution. The time scale in the near-field is in the same order as that in 
the acoustic field (e.g., [6, 7]). It is then clear that in the MAE method, all the approximations 
are in . The receiver distance in the acoustic field is  away from the source,  )(MO )/( MlO

Mlr /~ . (2)

In addition, because the expansions only apply to low Mach-number flow, it implies the 
compactness of the source, Eq. (1). This condition restricts the characteristic size of the near-
field source region to guarantee that the considered acoustic wave length is at least of 

. Notice this restriction is on the size of the source, rather than on the receiver 
location in the acoustic field. The restriction of the acoustic receiver location is imposed in 
Eq. (2), to be , which is in the same order as the acoustic wave length. In combining 
Eqs. (2) and (1), it can be deduced that  

)/( MlO

)/( MlO

/ ~ (1or c O )ω . (3)

In the CGF method, a mathematical requirement of the receiver location, ∞→r , has to be 
satisfied (e.g., [3–5]). However, it has not been explicitly indicated at what order this 
requirement needs to be satisfied in terms of Mach number. A careful examination of the 
mathematical arguments employed to derive the CGF shows that this requirement imposes an 
extra restriction on the receiver location: 

1>>
oc
rω . (4)

This means that the receiver is located at the acoustic far-field. That is, the receiver 
distance has to be much larger than the considered acoustic wavelength. Evidently, the 
compact source condition, Eq. (1), and the low Mach-number assumption themselves do not 
guarantee that Eq. (4) can be satisfied at the same time. In order to satisfy both of the 
compactness and the far-field requirement (Eq. 4), the following condition has to apply: 
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Ml
r 1
>> . (5)

By comparing the above equation with Eq. (3), it can be seen that, while only  

needs to be satisfied in the MAE method, a more restrictive condition of  has to 
be satisfied where n is at least greater than unity. 

)(~/ MOrl

)(~/ nMOrl

While both Eq. (2) and Eq. (5) require that the receiver location is far away from the 
source when 1<<M , the applicability regarding to the receiver location is more restrictive in 

CGF ( ) than that in MAE( ). At the acoustic far-field, the solutions 
from the two methods should be identical since both of them describe the same acoustic 
signal from the same source at the acoustic far-field. In some cases, these two solutions have 
the same expression. An example is the acoustic pressure produced by a vortex near a half-
plane. In this case, the results from CGF (by Howe in Section 6.2.2. of [5]) and from MAE 
(by Crighton in [7]) are exactly the same. However, in two classical examples, i.e., an 
oscillating cylinder and a vortex outside a cylinder, the two solutions have different 
expressions and the consistency between the two solutions is not easily shown. They are 
discussed in the following two sections to further illustrate the difference in the applicable 
limit and consistency in the acoustic far-field in the two solutions. 

)(~/ nMOrl )(~/ MOrl

3. SOUND GENERATED BY AN OSCILLATING CIRCULAR CYLINDER 

The analytical solution for this problem was given by Dowling and Ffowcs Williams [8] 
which was developed based on conservation of momentum for inviscid flow. For a circular 
cylinder with radius of a oscillating at and tiex ωε=1 02 =x , as shown in Fig. 1, the 
expression for the pressure fluctuation is 

(2)
0(2)

0

cos '( , ) ( / )''( / )
i to o

o

o

cp x t H r c e
H a c

ωρ ωε θ ω
ω

= , (6)

where 2
2

2
1 xxr += is the distance from the origin, and  is the Hankel function of the 

second kind of order zero. Notice that this solution can be applied to both the near-field and 
the far-field, under the assumption that the flow is inviscid and low Mach number. 

)2(
0H

Kao [6] used the MAE method for this problem and derived the acoustic pressure 
fluctuation. The details of the procedure are in [6], and the result is rewritten here in a 
dimensional form:  

3 2
(2)
1( , ) cos ( / )

2
i to

o
o

ap x t i H r c e
c

ωπρ εω θ ω= , (7)

where is the Hankel function of the second kind of order one. )2(
1H

It is expected that Eq. (6) reduce to Eq. (7). With the relations in [9], the Hankel function 
derivatives in Eq. (6) can be rewritten as 
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)()(' )2(
1

)2(
0 zHzH −= , (8)

and 

)(1)()('' )2(
1

)2(
2

)2(
0 zH

z
zHzH −= . (9)
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flow past the cylinder having unit speed in the j direction at large distance from the body. For 
flow over a circular cylinder, they can be expressed as 

)1( 2

2

y
ayY jj += , (12)

where j=1, 2. For the fluctuating cylinder in this problem, the far-field fluctuation velocity 
potential can be expressed as 

∫ ∫
∞

∞−
−−=

S n dydStyxGytx τττυφ )(),,(),(),( , (13)

where ),( τυ yn  is the surface normal velocity that can be expressed as 

)()(),( ττυ iin Uyny = , (14)

and )(τiU  is the surface translational oscillation velocity, which is ( , 0) in this case. 

Notice since the contour integral in Eq. (13) is on the surface of the cylinder, the Kirchhoff 
vector in Eq. (12) can be expressed as 

ωτωε iei

)sin,(cos2 ααaY = , (15)

and 

ατττ cos)()()()( 111 UUnUyn ii == , (16)

where . Then substitute Eqs. (11) and (14) into Eq. (13), with expressions in 
Eqs. (15) and (16), to get 

ωτωετ ieiU =)(1

∫∫ +
−−∂

∂
−=

−

∞−

π
αααατ

τ
τ

π
φ

2

0 2
2

1
/ 1

2/3

2
)cossincos

/
)(

2
),( dxxd

crt
U

trc
atx

ocrt

oo
. (17)

Therefore, the far-field pressure fluctuation is 

τ
τ
τθρφρ d

crt
U

trc
a

t
txp ocrt

oo

o
o ∫

−

∞− −−∂
∂

=
∂
∂

−=
/ 1

2

22

/
)(cos

2
),( . (18)

To use Eq. (18), U1 is taken real and equal to 

1
3( ) sin( ) cos
2

U πτ ωε ωτ ωε ωτ⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

. (19)

A formula in [5] (on p. 142) is used to express the integration in Eq. (18). Noticing the 
expression in [5] is for ω < 0 and here we assume ω > 0, we have  

/ cos( ) cos
4/

ot r c

oo

rd t
ct r c

β ωτ π πτ β ω
ωτ

−

−∞

⎡ ⎤⎛ ⎞−
= − −⎢ ⎥⎜ ⎟

− − ⎢ ⎥⎝ ⎠⎣ ⎦
∫ + , (20)

giving the integration in Eq. (18) to be 
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.
4

3cos

/
)2/3cos(

/
)( // 1

⎥
⎦

⎤
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

−−
−

=
−− ∫∫

−

∞−

−

∞−

πωπωε

τ
τ

ωτπωετ
τ
τ

o

crt

o

crt

o

c
rt

d
crt

d
crt

U oo

 (21)

By substituting the above integration into Eq. (18), the pressure becomes 
1/ 2 2 5 / 2 3( , ) cos cos ( / )

2
o

o
o

ap x t t r c
c r 4

π ρ εω πθ ω⎛ ⎞ ⎡ ⎤= −⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
− . (22)

Equation (22) is the acoustic pressure using the CGF method. According to the argument 
following Eq. (5), we would like to see how it compares with Eq. (7) under the acoustic far-
field condition, Eq. (4). In fact, when / or cω →∞  the Hankel function in Eq. (7) can be 

expressed as [9] 

( / 3 / 4)(2)
1

2( / ) oi r co
o

cH r c e
r

ω πω
πω

− −→ . (23)

Substitution of Eq. (23) into Eq. (7) with taking the real part leads to exactly Eq. (22). 
Figure 2 contains sample plots of the acoustic pressure versus time using the MAE and 

CGF methods. The results are calculated using the MAE method, Eq. (7), and the CGF 
method, Eq. (22). Note that Eq. (7) is applicable for any values of / ~ (1)or c Oω , while 

Eq. (22) is only valid in the acoustic far-field when / or cω →∞ . In Fig. 2, the acoustic 

pressure is normalized with the coefficient in Eq. (22), rca oo 2/2/52εωρπ . With this 

normalization, the CGF solution behaves just as a sinusoidal function of time, while the MAE 
solution should asymptote to a sinusoidal function as in Eq. (22) when / or cω →∞ . The time 

variation is in the range of ωt from 0 to 2π. A representative direction of the receiver location 
at 4/πθ =  is selected for comparison. Two different values of / or cω are used: 0.2π (Fig. 2a) 

for / ~ 1or cω  and 100π (Fig. 2b) for / 1or cω >> . The solid lines are the MAE results, and 

the dashed lines are the CGF results. Figure 2(a) shows that when / or cω  is a small value, at 

which the CGF method does not apply, the MAE result is different both in magnitude and in 
phase from that of the CGF. When / or cω  becomes large in Fig. 2(b), the MAE and CGF 

solutions are the same. The fact that the results of Eqs. (7) and (22) are exactly the same also 
provides the evidence of the correctness in the procedure of reducing the MAE solution Eq. (7) 
to its acoustic far-field form Eq. (22). Figure 2 demonstrates graphically the consistency and 
differences between Eqs. (7) and (22). 
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Figure 2. Far-field pressure (at the direction of θ=π/4) comparisons using the MAE and CGF 

methods for the oscillating cylinder case. The solid lines represent the normalized MAE 
results from Eq. (7). The dashed lines represent the normalized CGF results from Eq. (22). 

(a) / 0.2or cω π= ; (b) / 100or cω π=  
 

4. VORTEX OUTSIDE A CYLINDER 

The problem of a vortex outside a cylinder is shown in Fig. 3. Both the flow-field and the 
far field sound using the CGF method are presented in [5]. The sound is produced due to the 
unsteady motion of the vortex and its image at , where a is the radius of the cylinder, 

 is the position of the vortex in a complex variable format, and  is the complex 

conjugate of . The image at the origin does not have any contribution to the sound because 

it does not have motion. Notice that all the three vortices have a constant circulation value. A 

*2 / oza

oz *
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vortex with circulation of  is placed outside the cylinder so that the vortex trajectory is a 
circle traversing in the counter-clockwise direction with a constant radius  at speed 

0<Γ

or

2

2 22 (o
o o

a
r r a

υ
π

Γ
= −

− )
, (24)

and the angular speed of the rotation motion of the vortex is thus positive, equal to  

o

o

r
υ

=Ω . (25)
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Figure 3. A vortex outside a circular cylinder
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g υo and a to non-dimensionalize the system and denoting vortex 1 as the vortex 
 the cylinder and vortex 2 as the image inside the cylinder result in 

),sin,(cos)

),sin,(cos

**

**

τωτω

τωτω

oo
o

oo
o

r
a
a
r

=

=
 (26)

and τ are dimensionless angular speed and time, respectively, and are expressed as *
oω

.

,
r
aa

ooυ
=

 (27)
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The procedure of deriving the CGF solution is given in Ref. 5 and thus not repeated here. 
The derivation of the MAE solution is presented. Using Kao's MAE formula [6], the 
dimensionless acoustic pressure in the frequency domain can be expressed as 

(2) * *
1

*
* ( * ) sin cos

4
j o j ji

o

i M Dx Dy ip H R e d e d
a D D

ω τ ω τω
ω θ τ θ

υ τ
∞ ∞− −

−∞ −∞

Γ ⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∫ ∫ τ

τ
, (28)

where j=1, 2 and the Einstein summation convention is used, Γ=Γ1 and , MΓ−=Γ2 o is the 
Mach number defined as oo c/υ , and R is the dimensionless acoustic receiver distance defined 

as  with r the dimensional receiver distance. From Eq. (26), it can be deduced  arM o /

).cos,sin(,

),cos,sin(,

**
2

2
22

**11

τωτω
ττ

τωτω
ττ

oo
o

oo

r
a

D
Dy

D
Dx

D
Dy

D
Dx

−=⎟
⎠
⎞

⎜
⎝
⎛

−=⎟
⎠
⎞

⎜
⎝
⎛

 (29)

Substituting the above expressions into Eq. (28), it can be obtained 
2

(2)
1 2

* * * *

** ( * ) 1
4

[sin ( sin ) cos cos ].

o

o o

i i
o o

i M ap H R
a r

e d e dω τ ω τ

ω ω
υ

θ ω τ τ θ ω τ τ
∞ ∞− −

−∞ −∞

⎛ ⎞Γ
= − −⎜ ⎟

⎝ ⎠

− −∫ ∫
 (30)

Using the δ-function, Eq. (30) can be written as 
2

(2) * * * *
1 2

* * * *

** ( * ) 1 { sin [ ( ) (
4

cos [ ( ) ( )]}.

o
o o

o o

o o

i M ap H R i
a r
ω π )]ω θ δ ω ω δ ω ω
υ

θ δ ω ω δ ω ω

⎛ ⎞Γ
= − + −⎜ ⎟

⎝ ⎠
+ + + −

−
 (31)

Taking an inverse Fourier transform of Eq. (31) to get  

]}.)()([cos

])()([sin{1
8

*
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**
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1
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1
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*)2(
1
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−

−

 (32)

Defining 
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),()(
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1
*)2(

1

*)2(
1
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1

RHRHB

RHRHA

oo

oo

ωω

ωω

−+=

−−=
 (33)

Eq. (32) can be rewritten as 

{ }.)sin()cos(1
8
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8
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In Eq. (33), notice 
)()()( 11

)2(
1 xiYxJxH −= , (35)

where J1 is the Bessel function of the first kind of order one, and Y1 is the Bessel function of 
the second kind of order one. The definition of J1 and Y1 in [10] gives 

).()sgn(2)()(

),()(
*

1
**

1
*

1

*
1

*
1

RJRiRYRY

RJRJ

oooo

oo

ωωωω

ωω

+−=−

−=−
 (36)

When R>0 and , Eq. (33) gives 0* >oω

).(2

),(2
*

1

*
1

RJB

RiYA

o

o

ω

ω

=

−=
 (37)

Substitution of Eq. (37) into Eq. (34) leads to 

{ })sin()()cos()(1
4

* **
1
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1

*
2

2

τωθωτωθωω
υ ooooo

oo

o RJRY
r
a

a
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⎝

⎛
−

Γ
= . (38)

This is the result by using the MAE method for the acoustic pressure fluctuation in the time 
domain. 

To compare the CGF result at the acoustic far-field, further assume that . This 
condition leads to the asymptotic expressions as  

+∞→Ro
*ω

.
4

3cos2)(

,
4
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*
*
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*
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Substitute Eq. (39) into Eq. (38) to get 
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To compare with the solution in a dimensional form given in [5], Eq. (40) can be 
dimensionalized to give 
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 (41)

Again notice that the solution in [5] is for 0<Ω  because a positive circulation vortex 
was placed outside the cylinder resulting in a clockwise rotation. For the positive 
(counter-clockwise) rotation, the formula on page 142 in [5] gives a phase angle of +π/4, 
instead of –π/4. Therefore the CGF result in [5] for the positive Ω  case turns out to be the 
same as Eq. (41), which shows a typical two-dimensional dipole amplitude proportional to 
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ooo M2υρ  and a cylindrically diverging acoustic wave decaying at r/1  rate. The dipole 
lobes rotate counter-clockwise at an angular speed of Ω . 

Figure 4 compares the results of the acoustic pressure variation with time using the MAE 
and CGF methods for this case of a vortex outside a cylinder, similar to Fig. 2 for the 
oscillating cylinder case. The results are calculated using the MAE method Eq. (38) and the 
CGF method Eq. (41). Equation (38) is applicable for any values of )1(~/ Ocr oΩ  as long as 

, while Eq. (41) is only valid when 1<<oM ∞→Ω ocr / (equivalent to ). The 

acoustic pressure in Fig. 4 is normalized with the coefficient in Eq. (41), 

∞→R*ω

2

2

22
2 1

2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛

o

oo
ooo r

a
a
r

r
rM πυρ . The time variation is in the range of  from 0 to 2π. A 

representative direction of the receiver location at θ=π/4 is selected for comparison. Two 
different values of  are used: 0.2π (Fig. 4a) for 

tΩ

ocr /Ω 1~/ ocrΩ  and 100π (Fig. 4b) for 

. Figure 4(a) shows that when 1/ >>Ω ocr ocr /Ω  is a small value, at which the CGF method 

does not apply, the MAE result is different both in magnitude and in phase from that of CGF. 
When  becomes large in Fig. 4(b), the MAE and CGF solutions are the same. Again, 

when  is large, the MAE result of Eq. (38) is identical to its acoustic far-field form of 

Eq. (41), demonstrating the correctness of the procedure when reducing the MAE solution 
Eq. (38) to its acoustic far-field form Eq. (41). Figure 4 demonstrates graphically the 
consistency and differences between Eqs. (38) and (41). 

ocr /Ω

ocr /Ω

5. CONCLUSION 

While both of the MAE method and the CGF method are limited to low Mach number 
flow, it is shown that the CGF method is more restrictive in terms of the far-field distance 
condition. The applicability of the MAE method is at the distance of , and the 

applicability of the CGF method is at a farther away location of  with n>1. This 
difference in the two methods can also be interpreted as the acoustic far-field requirement of 

)/( MlO

)/( nMlO

/ or cω →∞  for the CGF solutions and of / ~ 1or cω  for the MAE solutions. When 

/ ~or c 1ω , the results from the two methods show significant differences in magnitude and 

phase. The MAE solution can be reduced to its acoustic far-field form and is shown to 
become identical to its corresponding CGF solution. Although there are other less restrictive 
formulae that can be used for flow generated acoustics (e.g., [11] and [12]), they are mostly 
used for numerical computation. The MAE and CGF methods can result in analytical far-field 
solutions. 

There can be recommended values as for what constant should be chosen instead of the 
“order of magnitude” symbol for the far-field distance in practical computations for needed 
accuracy of the solution and what values of n should be selected for the same purpose. In 
practical computations, these values depend on the Mach number in the specific application. 
In an example of Mach number around 0.1, the far-field distance for a valid MAE solution 
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can be in the range of  and larger, and the far-field distance for a valid CGF is 
approximately in the range of and larger. 

Ml /5.0
2/ Ml

 

 
Figure 4. Far-field pressure (at the direction of θ=π/4) comparisons using the MAE and CGF 

methods for the oscillating cylinder case. The solid lines represent the normalized MAE 
results from Eq. (38). The dashed lines represent the normalized CGF results from Eq. (41). 

(a) πω 2.0/ =ocr ; (b) πω 100/ =ocr .
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