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The Falkner-Skan equation models the laminar flow of an incompressible fluid 
for several physical situations. A specially interesting case is that of a flow with a 
stagnation point. This problem is solved analytically in the form of a power series 
with a finite radius of convergence. By modifying a Pade approximant 
corresponding to the power series a simple expression is obtained which describes 
the solution uniformly over the whole domain [0, )∞ .  
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INTRODUCTION 

The Falkner-Skan problem 

0  ,0])]([1[)()()( 2
0 ≥=′−+′′+′′′ ηηβηηβη ffff ,  (1.1a)
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η
η
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describes the laminar flow of an incompressible fluid under a variety of circumstances.  
When  ,10 =β   the above problem corresponds to decelerating, constant and accelerating 

flows for respectively  0,0 =< ββ   and  .1>β   If  2
1

0 =β   and  ,0=β   we get the Blasius 

problem 

0  ,0)()(
2
1)( ≥=′′+′′′ ηηηη fff  (1.2)

with the boundary conditions (1.1b). 
If  10 =β   and  1=β   then the equation 

0,0)]([1)()()( 2 ≥=′−+′′+′′′ ηηηηη ffff  (1.3)

with boundary conditions (1.1b) represents the stagnation point flow [1]. 
The above problems are two-point nonlinear boundary value problems and it is difficult to 

find analytical solutions which are valid outside a finite interval. A numerical solution of (1.2) 
was first obtained by Howarth [2] and the Falkner-Skan problem was first solved numerically 
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by Hartree [3]. Subsequently several authors have devised numerical techniques to efficiently 
deal with the two problems, see Asaithambi [4, 5] and references therein. 

Blasius [6] found an analytical solution of (1.2) in the form of a power series, however the 
series converges only for  .5690.00 ≤≤η   Liao [7], by using his homotopy analysis method, 
found an analytical solution valid on the whole domain  ).,0[ ∞   A power series solution of 
(1.3) may be found by using, for example, Adomian decomposition method, but the series 
converges only in  ),0[ 0η   where  2.30 ≈η  [8]. To our knowledge no analytical solution of 

(1.3) exists which represents the function on the whole domain  [0, )∞ .  In this paper we shall 
present a simple expression which fits the function ( )f η′  on  [0, )∞   and a simple quadrature 
gives  ( )f η   on the whole domain with remarkable accuracy. 

 

1. ANALYTICAL SOLUTION OF FALKNER-SKAN EQUATION 

Asghar [8] found a power series solution by using the Adomian decomposition method. 
Here we find this solution by a direct method which produces the coefficients in the series 
with less effort. 

Denote the unknown    by  (0)f ′′ α   and let a solution of (1.3) be 

n
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Substitution of    in (1.3) yields , ,f f f′′ ′′′
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Consider the second summation in (2.2) i.e. 
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and define a new index  ,  hence  m n k= + n m k= − ,  which indicates  0 .  With the 
new indices    and    the summation in (2.3) becomes 
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n m
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++∑∑ 2
00

)1)(2( . (2.4)

Similarly the last summation in (2.2) can be replaced by  

m
nnm

m

nm

aannm η11
00

)1)(1( ++−
=

∞

=

++−∑∑ . (2.5)

Thus (2.2) can be written as 
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From the boundary conditions (1.1b) we have 

0          ,0 10 == aa . (2.7)

While the assumption (0)f α′′ =  implies  

22
α

=a . (2.8)

By equating the constant term in (2.6) to zero we get  

6
1

3 −=a . (2.9)

Higher coefficients  ,    can be found from the following recurrence relation which 

we get by setting the coefficient of  
ma 1m ≥

mη   in (2.6) to zero 
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First few coefficients given by (2.10) are as follows 
2

4 5 6 7

3 2

8 9 10

4
7 3

11 12

10, , , ,
120 360 2520

, ,
40320 90720 226800
16 27 , 3.77869 10 .
3991680

a a a a

a a a
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α α
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2. WANG EQUATION 

By defining 
2

2,df d fx y
d dη η

= = . 

Wang [9] transformed equation (1.2) to  

0
2
1

2

2

=+ x
dx

ydy . 

Asghar [8] has shown that the same transformation changes equation (1.3) into 
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10           ,0)1( 22 <≤=−′−−′′ xxyyxyy . (3.1)

The boundary conditions transform to  

0)1(,1)0(,)0( =−=′= yyy
α

α . (3.2)

Assume a solution of the form 
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It is easy to find  32 2
1
α

−=b   and proceeding as in section 2, we obtain the recurrence 

relation 
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First few coefficients generated by (3.4) are as follows 
4 4

3 45 7

4 4

5 69 11

0.166667( 3 ) 0.625 0.208333,
2

0.875 0.333333 1.3125 0.569444 0.0222222, .

b b

b b

α α
α α

8α α α
α α

− + − +
= =

− + − + −
= =

 

The unknown parameter  α   can be found by solving the equation 

0)1( =y . (3.5)

In practice one finds an approximation  kα    to  α   by replacing (3.5) by 

0)(
0

=∑
=

αn

k

n

b . (3.6)

A few members of the sequence  { }∞=0kkα    are displayed in Table 1. 
 

Table 1. Approximation values (0)f α′′ =

k    kα   
 50    1.  2321
 90    1.  2324
 250   1.23254

 1000   1.23258
 

The value of  α ,  correct to seven decimal positions as found numerically by shooting 
method, is  232589.1=α  [5]. 
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3. UNIFORMLY VALID ANALYTICAL SOLUTION 

Using the coefficients evaluated in section 2 and the value of  α   found in section 3 the 
power series expression for the solution of the stagnation point flow problem up to the power 
20 becomes 

2 3 5

6 7

9 6 10

6 11 7 12

7 13 8 14

8 15

( ) 0.616294 0.166667 0.0126606
0.00342385 0.000396825 0.0000464444
0.0000167468 5.43469 10
1.96211 10 7.07612 10
2.04944 10 6.11228 10
2.05581 10 6.27563

f η η η η
8η η η

η η

η η

η η

η

−

− −

− −

−

= − +

− + −

+ − ×
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Differentiate (4.1) to get  
6 11 4 5

6 7

9 10

6 11 6 12

7 13 7 14

7 15

( ) 1.23259 0.5 10 0.063303 0.0205431
0.00277778 0.000371555 0.000150721
0.0000543469 0.0000215832
8.49134 10 2.66427 10
8.5572 10 3.08372 10
1.0041 10
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3.03796 10
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9.22811 10 .
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η η

η
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×
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 (4.2)

Applying Pade [6/6] approximation to (4.2) we get  

)(
)()(

2

1

η
ηη

f
ff =′ , (4.3)

where 

654

32
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and  
2 3

2
4 5

( ) 1 4.51091 1.88388 0.547214

0.152132 0.0265334 0.00419318 .
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Now we replace the functions  1( )f η   and  2 ( )f η   by respectively  1( )g η   and  2 ( )g η   so 

that 

1

2

( )( )
( )

gf
g

ηη
η

′ = , (4.4)
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where  
2 3
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2
5 6 7

( ) 1.23259 5.06009 0.0665943 0.204148

0.17892 0.0139962 1
2

g

ea
η

4η η η η

η η η

= + + −

⎛ ⎞
+ − + −⎜ ⎟

⎝ ⎠

η
 

and  

2 3 4
2

2
5 6 7

( ) 1 4.51091 1.88388 0.547214 0.152132

0.0265334 0.00419318 1 ,
2

g

ea
η

η η η η

η η η

= + + + +

⎛ ⎞
+ + + −⎜ ⎟

⎝ ⎠

η
 

where    is a constant to be determined. It is clear that for every  a   the expression (4.4) will 
represent 

a
( )f η′ , for small η , since it will differ only slightly from the [6  Pade 

approximant for the function. Also for large  
/ 6]

η   the exponential term will dominate other 
terms and the limiting value will approach unity as required by the boundary condition 

.  An optimum choice of    should ensure that the ratio  ( ) 1f ′ ∞ = a 1 2( ) / ( )g gη η   differs as 

little as possible from the exact value of  ( )f η′   on the entire domain  [0 .  To achieve this 
we numerically evaluate the integral 

, )∞

η
η
ηη

d
g
g

)(
)(

2

1
0∫
∞  (4.5)

and choose  a   so as to make the above integral as close to  ( )f η∞   for some suitable but 

arbitrary  η∞ .  We choose  8η∞ =   which forces us to fix  0.00051a = .  With this choice of 

parameters the integral (4.5) gives 7.35212 which agrees with the exact numerical value to 
four decimal positions. Also 

1
)8(
)8(

2

1 =
g
g , 

which implies that the function  1 2( ) / ( )g gη η   has already attained its asymptotic behavior at 

8 and any integration beyond this point will yield approximate values for  ( )f η   in agreement 

with the exact values to at least four decimal positions. Let  ( )af η   denote an approximate 

value found from 

du
ug
ugfa )(

)()(
2

1
0∫=
η

η . (4.6)

In Table 2 we compare a few approximate values, as found from (4.6), with the exact 
values of the solution, obtained numerically. 
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Table 2. Comparison of approximate values with exact 

η   Approximate  )(ηaf   from (4.6)  )(ηf   from a numerical solution

0 0 0 
0.4 0.0880566 0.0880566 
0.8 0.312428 0.312423 
1.2 0.622033 0.622028 
1.6 0.9798 0.9798 
2 1.3620 1.3621 

2.4 1.7555 1.7552 
2.8 2.1534 2.1530 
3.2 2.5526 2.5523 
3.6 2.9523 2.9522 
4 3.3522 3.3521 

4.4 3.7521 3.7521 
4.8 4.1521 4.1521 
5.2 4.5521 4.5521 
5.6 4.9521 4.9521 
6 5.3521 5.3521 

6.4 5.7521 5.7521 
6.8 6.1521 6.1521 

 
It is clear that for  0 η≤ < ∞ , the maximum error is less than 2 parts in ten thousand and it 

steadily decreases as we go down the Table. Even this error could be decreased by considering 
a Pade approximant of an order higher than  [6   considered in this paper. / 6]

 

CONCLUSIONS 

Sometimes it is possible to find an approximate solution of a nonlinear problem in the 
form of an infinite series. However the series may not converge outside a finite interval 
whereas the solution is known to exist on an infinite domain. In the case of the Blasius 
problem, the domain was extended to infinity by Liao [7] by making use of the homotopy 
analysis method and by Ahmad and Albarakati [10] by employing a technique similar to the 
one used in the present work. It is possible to use the homotopy technique to solve Falkner-
Skan equation, however this will result in lengthy expressions. We have been successful in 
finding a short expression because, by modifying the Pade approximation, we have 
incorporated the asymptotic behavior of the function. As a result this expression gains in 
accuracy as the values of η  are increased in contradistinction to solutions in the form of series 
or rational expressions.  
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