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A Surface-Acoustic Wave (SAW) device has been modeled employing a second-
order Lagrangian finite-element method. The model is able to describe SAW response 
variations with arbitrary orientation of the unit crystal cell as compared to the 
macroscopic device geometry and hence allows for fast SAW design optimization. The 
model is used to determine the resonance frequency of different SAW device 
structures. The finite-element results are compared with independent analytical results 
obtained for two configurations of the applied electrode voltages. In order to obtain 
significant excitation of SAWs, it is preferable to have the electrode fingers oriented 
along the [110] crystal axis direction, which is the direction along the x=y line with z 
constant. Indeed, characteristics of normal displacement amplitudes as a function of 
rotation angle between the crystal axes and the electrode fingers at a fixed frequency 
albeit independent of the frequency verify that strong SAW excitations take place for 
rotation angles near 45 degrees corresponding to the [110] direction. Computations of 
various eigenmodes of both Rayleigh and Lamb type are discussed. 

Keywords: SAW, piezoelectric, GaAs, zincblende, rotation. 

INTRODUCTION 

Surface acoustic waves (SAW) are elastic waves which propagate along the surface of an 
elastic body while dying out exponentially into the bulk of the body. SAW devices are widely 
used in today’s modern high frequency communication systems due to their stability and 
reliability even in the GHz region [1]. A SAW device consists of a piezoelectric material (or film) 
on which interdigitated transducers (IDT) are placed. Usually a single SAW device operates as an 
input and an output transducer. This makes it possible to create an acoustic wave by applying a 
voltage signal and vice versa. This property makes SAW devices interesting for applications 
allowing it, e.g., to operate as an analog electric filter at selected frequencies (in the range from 
about 10 MHz to 2.5 GHz).  SAW devices are also widely used in mobile phone technology, 
wireless communication and telecommunication systems [2], acoustically induced charge 
transport [3], light storage [4], modulation of photonic structures [5], optically cavities [6] and 
the driving of micromechanical systems [7, 8]. An example of more general modeling 
characteristics of SAW devices can be seen in the Ph. D. Thesis from A. Gantner [9]. 
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1. MODEL DESCRIPTION 

A SAW-device usually consists of a piezoelectric material with several interdigitated 
transducers (Figure 1). 

 

 

Figure 1. 

SAW-device 

 
To ease modeling, a periodic structure is assumed where only a section of the SAW-structure 

is modeled. Figure 2 shows a simplified piezoelectric SAW-device section of length L and height 
h. On the z=h surface interdigitated transducers apply positive and negative voltages of equal 
amplitudes in an alternating manner. The piezoelectric domain is referred to as Ωp while 
boundaries with positive or negative IDTs are denoted ∂Ω+ and ∂Ω–, respectively. The surface 
boundaries at x=0 and x=L are referred to as ∂Ωp while other faces are represented by ∂Ωn. 

 

 

 

Figure 2. 

Section of a SAW-device 
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2. MATHEMATICAL MODELING OF A SAW DEVICE 

The mathematical model used in this work is based on a small segment geometry representing 
a section of a SAW device. The segment, treated as a 2D segment (Figure 3) as we neglect 
variations along the y-direction, consists of a piezoelectric material with IDTs mounted on the top 
surface. We model two types of IDT configurations, Single Finger IDTs (Figure 3a) and Double 
Finger IDTs (Figure 3b). The expected SAW wavelength (λSAW) is the periodic distance of the 
IDT electrodes. In the case of Single Finger IDTs we model a five SAW wavelength segment 
L=5λSAW  while in the case of Double Finger IDTs we model a one wavelength segment. 

 

  

(a) Single Finger IDTs model (b) Double Finger IDTs model 

Figure 3. 2D-section of the SAW-device 

 
In the following we adopt the tensor notation used in [10] where subscripts I,J,K,L = 

1,2,3,4,5,6 corresponding to xx,yy,zz,yz,xz,xy components, respectively, and subscripts 
i,j,k,l = 1,2,3 corresponding to x,y,z, respectively. 

The domain Ωp is modeled as a general piezoelectric ceramic including the coupling between 
mechanical and electric effects [11]. Consider the volume element dxdydz as shown in Figure 4 
where Tij is the stress component in the ith-plane along the jth-direction.  

 

 

 

Figure 4. 

Stresses on a volume element 
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Newton’s Second Law accounts for stresses in the material due to elastic and piezoelectric 
contributions and can be stated as [9, 10] 

0=
∂
∂

−
j

ij
i x

T
uρ , (1)

where ρ is the mass density,  is the acceleration in the ith direction, xi is the ith spatial 
component. 

iu

If we next assume a monofrequency electric potential imposed at the IDE’s, then — in a linear 
model — all other variables will be modulated at the same angular frequency. Hence, Newton’s 
Second Law reads: 

02 =
∂

∂
−−

j

ij
i x

T
uρω , (2)

where ω is the angular frequency. 
Assuming no free electric charge density within the piezoelectric domain, Gauss’s Law may 

be expressed as 

0=
∂
∂

i

i

x
D , (3)

where Di is the electric displacement vector. 
According to Faraday’s Law, the electric field iE  is irrotational, when neglecting magnetic 

effects (not important at MHz piezoelectric applications). Thus the electric field may be defined 
using a scalar electric potential field: 

i
i x

VE
∂
∂

−= . (4)

2.1. Piezoelectric constitutive relations  
The coupling between electrical and mechanical effects is due to the piezoelectric constitutive 

relations, resulting from the full free energy of the material and thermodynamic identities (setting 
losses in the system to zero and assuming reversibility). They read: 

jIjJ
E
IJI EeScT −= , 
S

i ij j iJD E eε= + JS , 
(5)

where T, S, E, cE, e and εS are the stress, strain, electric field, stiffness at constant electric field, 
piezoelectric stress constant, and permittivity at constant strain, respectively. Assuming small 
displacements the strain tensor becomes 

( )ijjiji xuxuS ∂∂+∂∂= Ѕ . (6)

We now have a closed set of modeling equations consisting of Equation (2), (3), (4), (5) and 
(6), Newton’s Second Law and Gauss’s Law may be expressed employing mechanical 
displacements and the electric potential giving four equations in four unknowns: (ui , V). 
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2.2. Boundary conditions 
The ∂Ωn boundaries are assumed free and insulating, thus they are modeled employing 

Neumann conditions. On the boundaries ∂Ω+ and ∂Ω– the applied electric potential is modeled 
using a Dirichlet condition while stress components are set to zero.  

The ∂Ωp boundary is modeled as a periodic boundary condition where continuity of normal 
stress, normal electric displacement and tangential electric field are imposed while all mechanical 
displacement components are continuous.  

The boundary conditions are summarized in Table 1, where Vp is the voltage amplitude of the 
imposed electric potential, t is the time and 1−=i . 

 
Table 1. Boundary conditions 

B.C. Description Expression 

Applied potential V = Vp exp(iω t) 
∂Ω+ 

No normal surface stress niTij = 0 

Applied potential V = –Vp exp(iω t) 
∂Ω- 

No normal surface stress niTij = 0 

Electric insulation niDi = 0 
∂Ωn 

No normal surface stress niTij = 0 

Continuity of normal electric displacements niDi |x=0= niDi |x=L 

Continuity of tangential electric fields | 0xV = =  | x LV =

Continuity of normal stress niTij |x=0= niTij |x=L 
∂Ωp 

Continuity of displacements ui |x=0 = ui |x=L 

 

2.3. Rotation  
The mathematical model is a 2D problem since, as mentioned above; we neglect variations 

along the y-axis, i.e. 0→∂∂ y . Since piezoelectric materials belong to various crystal classes, the 
orientation of the crystal axes, relative to the geometrical shape must be defined. Usually, 
material parameters of piezoelectric materials are defined with respect to the crystal axes which, 
generally speaking, are different from the macroscopic device structure axes. Hence, it is 
necessary to describe how material parameter tensors must be modified so as to account for 
different macroscopic device directions as compared to the crystal axes of the unit cell. 

If the directional vector for the geometry is given as ),,( zyxr = , then the directional vector 
written in terms of the crystal axes, r~ , may be found using a coordinate transformation matrix a:  

jiji rar =~ . (7)
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When using Euler’s transformation theory, the transformation matrix is defined in the Euler 
angles ψ, θ and φ  rotating around x, y, and z-axis (roll-pitch-yaw) in that given order. The matrix 
is shown in appendix (A.3).  

The rotated stiffness, piezoelectric constant and permittivity matrices may then be found using 
the transformation matrix and the Bond matrix M [10] and shown in appendix (A.4).  

t
LJ

E
KLIK

E
IJ McMc =~ , 

t
LJkLikiJ Meae =~ , 

t
ljklikij aa εε =~ . 

(8)

The constitutive relations then take the form: 

j
t

IjJIJI EeScT ~~ −= , 

j
s

ijJiJi ESeD ε~~ += , 
(9)

which can be used to express Gauss’s and Newtons’s Second Law in the macroscopic geometry 
axes of relevance for the present problem (while quantities without tildes refer to the crystal 
axes). Note that superscript “t” denotes transpose.  

3. RESULTS 

In this section, we determine resonance frequencies of a GaAs SAW device for different 
rotation angles of the SAW device with respect to the unit cell crystal axes. The mathematical 
model was implemented in the finite element environment COMSOL Multiphysics. A Single 
Finger IDT SAW device as shown in Figure 3a with λSAW=2.8 µm, L=5λSAW, h=14 µm and 
ws=we= λSAW/7=0.7 µm will be considered. Figure 5a shows a plot of the displacement uz for 
different values of the rotation angle θ at a fixed frequency (rotation around the [001] crystal 
axis). The displacement value obtained corresponds to applying alternately +100 V and –100 V 
to the IDT fingers. It can clearly be seen that there exists a symmetry around the rotation angle 
π/4 (θ = π/4 => x=[110] direction). The Euler rotation angles and the Euler transformation matrix 
corresponding to a rotation to the [110] direction can be seen in appendix (A.5). At this angle and 
in the vicinity of it, a Rayleigh wave is generated. In actual fact, a double resonance with respect 
to rotation angle is found near π/4. Figure 5b shows the Rayleigh wave deformation at the top 
surface of the model corresponding to the rotation angle θ = π/4. Away from the symmetry point 
(θ = π/4) other resonance frequencies are found. The resonance frequencies near 0.632 radians 
and 0.939 radians (symmetric angles with respect to π/4) both correspond to Rayleigh waves. 
Figure 5c shows the generated Rayleigh waves at the top and bottom surface of the model. The 
resonance frequencies found near 0.703 radians and 0.868 radians (again symmetric angles 
around π/4) correspond to Rayleigh waves at the bottom surface.  

We next study the model where the macroscopic structure is rotated by an angle of π/4 so as to 
find the SAW resonance frequencies. Sweeping the frequency from 100 MHz to 1.6 GHz 
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(Figure 6), a number of resonance frequencies are found. A substantial part of the other resonance 
frequencies (those above 1.1 GHz) correspond to Lamb waves (where strong deformations exist 
throughout the device and not only at the top surface). Figure 8 shows a Lamb wave deformation 
of the model. The resonance frequency at 1.022 GHz corresponds to a Rayleigh wave excitation, 
which is in excellent agreement with measurements carried out by de Lima, Jr. et al. [12, 13]. 
Here they examine a device with similar parameters as those used in the present work.  

B. A. Auld [10] presents an analytical evaluation of surface wave velocities by solving for the 
velocity where symmetric and anti-symmetric Lamb waves partially cancel and create surface 
waves. It is argued that the surface wave velocity may be determined by the Poisson’s ratio and 
the bulk shear wave velocity as: vR/vs ≈ (0.87+1.12σ)/(1+σ), [10, vol. 2, eq. 10.35] where vR , vs 
and σ are the surface wave velocity, bulk shear wave velocity, and the Poisson ratio, respectively. 
The Poisson ratio is determined from the stiffness along the bulk longitudinal (x) direction and 
the bulk shear (z) direction. Accordingly, for the problem with a rotated unit-cell crystal as 
compared with the SAW-device axes, the rotated stiffness values must be used. Employing 
equation (8) with a rotation angle θ = π/4, the bulk longitudinal and bulk shear stiffness become: 

 and 11 11 12 44( 2E E E Ec c c c= + + ) / 2 E
13 13
Ec c= , respectively. Hence, the Poisson ratio is 

1
2 13 11 13 11( / ) /(1 /E E E Ec c c cσ = − − ) . Given the material constants of GaAs (listed in the Appendix), the 

Poission ration becomes σ = 0.2111. The bulk shear velocity for the structure now reads: 

13 / 3163E
sv c ρ= =  m/s.  Using the approximation in [10], the surface wave velocity is estimated 

to vR = 2890 m/s. We expect the first surface wave resonance frequency occurs when the 
wavelength matches the shortest distance between two electrodes having the same applied 
potential (denoted as λSAW in Figure (3a)). Thus, by analytic evaluation, the first surface wave 
resonance frequency is expected at f0 = vR/λSAW = 1.032 GHz when vR = 2890 m/s and the 
periodic electrode distance is λSAW = 2.8 µm. The analytical work presented in [10] agrees too 
within 1% of the present work based on the finite element method and the experimental result by 
Lima, Jr. et al. [12, 13].  
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Figure 5a. 

Angle sweep – at constant frequency 1.022 GHz 
(uz displacement). The displacement value 

obtained corresponds to applying alternately 
+100 V and –100 V to the IDT fingers 

Figure 5b.  

Rayleigh wave at the top surface 
θ = π/4 radians, frequency=1.022 GHz 

(uz displacement) 

   
Figure 5c. 

Rayleigh wave at the top and bottom surfaces 
θ = 0.632 radians or θ = 0.939 radians, 

frequency=1.022 GHz (uz displacement) 

Figure 5d. 

Rayleigh wave at the bottom surface  
θ = 0.703 radians or θ = 0.868 radians, 

frequency=1.022 GHz (uz displacement) 
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Figure 6. 

Frequency sweep – fixed angle θ = π/4 radians 
(|uz| displacement). The displacement value 
obtained corresponds to applying alternately 

+100 V and –100 V to the Single Finger IDTs  

Figure 7. 

Frequency sweep –  fixed angle θ = π/4 radians 
(|uz| displacement). The displacement value 
obtained corresponds to applying alternately 

+100 V and –100 V to the Double Finger IDTs 
 

  

 
 
 
 

 
 
 

Figure 8. 

Lamb wave, frequency = 1.512 GHz and angle 
θ = π/4 radians (uz displacement) 

Figure 9. 

SAW resonance frequency for Single Finger 
IDTs with varying finger/electrode width 
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Next, we study a Double Finger IDT SAW device with λSAW = 5.6µm, L = λSAW, h = 14 µm 
and ws = we = 0.7 µm. As above the macroscopic device geometry is rotated by an angle of π/4 
with respect to the crystal unit cell (GaAs). Also here we apply + 100V and –100 V to the IDTs 
alternatingly, but now the IDT configuration is set up such that the applied potential changes sign 
in steps of two neighboring fingers (refer to Figure 3b). As expected, and in agreement with 
[12, 13], the SAW resonance frequency is found near 510 MHz being half of the SAW resonance 
frequency found for the Single Finger IDT configuration (with a SAW wavelength 
λSAW = 2.8 µm). Figure 7 shows |uz| for a frequency sweep between 100 MHz to 800 MHz. A 
substantial part of the other resonance frequencies found (those above 590 MHz) correspond to 
Lamb waves.  

Using the Single Finger IDT configuration again we next study the influence of the width of 
IDT fingers/electrodes with respect to the SAW frequency band. Figure 9 shows the resonance 
frequency for four models only differing in the finger/electrode width used (we = 0.3 µm, 
we = 0.5 µm, we = 0.7 µm and we = 0.9 µm). Comparing the four graphs it is observed that the 
influence of the finger width is rather weak. The SAW frequency band becomes a bit narrower 
when the finger/electrode width is reduced. Obviously, near the resonance peaks, losses must be 
accounted for in determining actual displacement values. 

The model implemented does not include damping terms. Damping effects are usually 
complicated. However, viscoelastic effects accounting partially for acoustic losses in materials 
can be easily introduced in the modeling equations by including a strain derivative term with 
respect to time: E

I I J J I J J I jT c S S t e Eη= + ∂ ∂ − j  where  is a 6×6 viscosity matrix. It is 

known [10, Chap. 7] that the viscosity tensor takes the same general form as the stiffness tensor 
and hence transforms similar to the stiffness matrix, i.e. 

JIη

t
I J IK KL LJM Mη η= .  

4. CONCLUSIONS 

Our theoretical model is used to investigate SAW devices based on a GaAs zincblende crystal. 
In the case where the IDT fingers are aligned with the crystal axes, electrical excitation is not 
possible. However, rotating the rectangular structure such that IDTs are tilted with respect to 
crystal axes, it becomes possible to generate surface acoustic waves. It is shown for such a 
structure that an angular resonance exists around π/4. Scanning in frequency the rotated structure 
(with rotation angle θ = π/4) gives a frequency resonance near 1.022 GHz (corresponding to 
finger width and interspacing equal to 0.7 micrometer) in excellent agreement with 
experimentally obtained values. The proposed model makes it possible to optimize SAW device 
geometries for arbitrary unit-cell crystal class and orientation. 
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APPENDIX 

The stiffness tensor at constant electric field- , the piezoelectric stress tensor and the permittivity 
tensor at constant strain read: 
 

,
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(A.1) 

 
Material constants for GaAs piezoelectric Zincblende 34 m crystals (inversion-asymmetric cubic) 
are [10]: 
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ρ = 5316 [kg/m3]. 

(A.2) 
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The Euler coordinate transformation matrix (roll-pitch-yaw convention) obtained by rotation 
about the z, y and x-axis (in the given order) reads: 
 

( ) ( ) ( ) ( ) ( )
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The Bond matrix given in ref. [10] referring to (A.3) is 

.
222
222
222

222

222

222

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+++
+++
+++

=

yxxyyyxxyzxxyxxzyyxzyzxyyzxzyyxyyxxx

zxxyzyxxzzxxzxxzzyxzzzxyxzzzxyzyxxzx

zyyxzxyyzxyzzzyxzyyzxxyyzzyzzyyyzxyz

zyzxzxzzzzzyzzzyzx

yyyxyxyzyzyyyzyyyx

xyxxxxxzxzxyxzxyxx

aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaa

aaaaaaaaa
aaaaaaaaa
aaaaaaaaa

M

 

(A.4) 

 
As an example, the Euler rotation angles and the Euler coordinate transformation matrix for a 
transformation to the [110] direction becomes 
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