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The paper proposes a wavelet spectral analysis method of Lamb waves in thin 
isotropic plates. A numerical code is developed on the Comsol Multiphysics 
software to solve, by the finite element method, the equation of motion and 
determine the displacement field. The post processing of the obtained displacement 
field is done, on the Matlab software, by a method based on the wavelet transform 
(WT). The considered application aims to determine the dispersion curves of 
symmetric S0 and antisymmetric A0 Lamb modes of a plane steel plate. These 
curves are obtained by the WT of displacement field and are compared to the 
analytic curves.  Several mother wavelets are tested showing that the complex 
mother wavelet Shan 1-1.5 gives the better agreement. 
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INTRODUCTION 

In industry, ultrasonic waves are commonly used for detecting and characterizing defects 
in materials. Lamb waves are particularly suitable for large structures like plates and sheets 
since they can propagate over long distances without significant attenuation. In order to set 
and optimize nondestructive testing (NDT) techniques, based on the propagation and 
diffraction of Lamb waves, it is necessary to provide propagation models and analysis 
methods of these waves. The modelling is generally performed by the finite element method 
(FEM) leading to the displacement signals in the studied structure. The processing of these 
predicted Lamb signals was made extensively by the Fourier transform [1, 2] while the 
wavelet transform (WT) analysis is under development since a few years. It was Daubechies 
[3] and Newland [4] who firstly introduced WT into the study of vibrational signals in the 
early 1990s. Then the WT has been introduced to the time-frequency representation of 
transient waves propagating in a dispersive medium. Hayashi et al. [5] give an estimation of 
thickness and elastic properties of metallic foils by the WT of laser-generated Lamb waves. 
Jeong et al. [6] use the Gabor wavelet to draw A0 mode dispersion curve in composite 
laminates. The effectiveness of WT analysis for studying wave dispersion was evaluated by 
Y. Y. Kim and E. H. Kim [7]. Many authors use the WT for the detection of a delamination, a 
crack, a defect or fatigue in plates, in composite structure or in pipes [8–13]. 
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In this work, we present a finite element (FE) modelling and propose a wavelet transform 
(WT) analysis of Lamb waves in isotropic plates. The FE modelling is developed on the 
Comsol Multiphysics software to compute the displacements field in plates. The obtained 
displacements are then processed by WT in the Matlab software to determine the dispersion 
curves of the propagating Lamb modes. Several real and complex mother wavelets are tested 
to determine the most suitable one for the Lamb signal analysis. The proposed FE modelling 
and WT processing are tested on a steel plate without defects. 

1. LAMB WAVES THEORY 

1.1. Lamb equation 
We consider a Lamb wave propagating in thin isotropic plate of thickness e = 2d along the 

x direction of a Cartesian coordinate axis, Figure 1. 
 

y  

_________________________________________________________________________________________ 

 

Figure 1. Schematic of the considered isotropic plate 

 
The boundary conditions applied to the stress-free faces of the plate lead to the 

characteristic equations (Rayleigh-Lamb equations) [14–15]: 
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where  is the wave number, k Lk ( ) is the longitudinal (shear) wave number.  Tk

The roots ( ) of equation (1) can be real, pure imaginary or complex, corresponding 
respectively to propagating, no propagating and evanescent modes. Only the propagating 
modes (Lamb modes) are considered here. 

k

1.2. Dispersion curves 
The numerical resolution of equation (1) permits to obtain the dispersion curves for 

symmetric and antisymmetric Lamb modes. In the case of an isotropic steel plate, these 
curves are presented in figure 2. 

x +d  
-d 
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Figure 2. Exact dispersion curves: phase (a) and group (b) velocities versus the product 
frequency-thickness f.e  

for a steel plate (  = 6144 m/s,  = 3095 m/s, e = 6 mm, ρ = 7850 kg/m3) Lv Tv

1.3. The displacement field 
The expressions of displacements s xu  and s yu  of symmetric modes are given by: 
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where ω  is the angular frequency 
The expressions of displacements  and  of antisymmetric modes are simply 

obtained by changing in the expressions (2), the subscripts (s) by (a) and (sinh) by (cosh) and 
vice versa. 

a xu a yu

1.4. Modelling of Lamb waves propagation: the finite element method 
The spatial discretization of a plate and the application of the virtual works theorem allow 

writing the motion equation in the following matrix form (damping is not considered in this 
study) [16]: 

[ ]{ } [ ]{ } { }M U K U F+ = , (3)

where  is the global mass matrix, [ ]M [ ]K  is the global stiffness matrix, { }U  is the 

displacement vector, { }U  is the acceleration vector and { }F  is the vector of applied forces. 

To solve the equation (2) and find the displacement field { }U , we used the Newmark 
method. The construction of the solution at time tt ∆+  is done from the vectors at time t: 

, {  and  according to the following algorithm [17]: { }tU }tU { }tU
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where α  and β  are Newmark integration coefficients, t∆  is the time step. 
The coefficients α  and β  govern the stability, accuracy and numerical dissipation of the 

integration method. The four well-known variants of Newmark method are: the Newmark 
explicit method (α =1/2, β =0), the Fox-Goodwin method (α =1/2, β =1/12), the linear 
acceleration method (α =1/2, β =1/6) and the constant average acceleration method (α =1/2, 
β =1/4). 

2. POST PROCESSING OF DISPLACEMENTS FIELD 

2.1. Bi-dimensional Fourier transform: 2DFT 
The bi-dimensional Fourier transform of the space-time evolution of displacement u(x,t) is 

defined by the formula:  

( )( , ) ( , ) ωω
+∞

− −

−∞

= ∫ j t kx
uF k u t x e dtdx , (5)

where ω  is the angular frequency and j is the complex number such as j2 = –1. 

2.2. Wavelet transform (WT) 
The wavelet transform (WT) was introduced by Morlet in the early 1980 to study seismic 

signals [18]. Later Grossmann, Meyer, Mallat and Daubechies established a proper 
mathematical foundation for wavelets [19]. Since then, wavelets have been extensively 
employed in signal processing applications. In WT, a varying window function is used, which 
called the mother wavelet. A wavelet is defined using two parameters: a scaling parameter a, 
which is the inverse of the frequency, corresponds to a dilatation or compression in time of 
the window function and a translation parameter b, which translates the window function 
along the time axis. 

The continuous WT of a signal u(t) is defined by [20]: 

*1( , ) ( ) t bWf a b u t dt
aa

ψ
∞

−∞

−⎛ ⎞= ⎜ ⎟
⎝ ⎠∫ , (6)

where ( )tψ is the wavelet function, * ( )tψ  is the complex conjugate of ( )tψ . 

_________________________________________________________________________________________ 

In the case of Lamb waves, the localization of the peak on the scalogram indicates the 
arrival time of the group velocity corresponding to the parameter b at the frequency 
corresponding to the scale parameter a [6, 21]. In other words, for each frequency f, the 
localization of the maximum value of the modulus of the wavelet coefficients  gives 
us the arrival times td1 and td2 corresponding to two points of the upper face of the plate M1 
and M2 for a specific distances of propagation d1 and d2 (Figure 3). The frequency-dependant 
group velocity vg(f) is deduced from the following equation: 

( , )Wf a b
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Figure 3. Schematic of the considered isotropic plate 
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d1 
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3. NUMERICAL SIMULATION 

3.1. The studied application 
The studied application aims to determine the dispersion curves of S0 and A0 Lamb modes 

of a safe plane steel plate (Figure 1) with thickness e = 2d = 6 mm, Young’s modulus 
E = 2e11 Pa, Poisson’s ratio ν = 0.33, density ρ = 7850 kg/m3, longitudinal velocity 
vL = 6144 m/s and shear velocity vT = 3095 m/s. 

The simulation uses a finite element model, implanted in the Comsol Muliphysics code. 
The mesh must be able to represent the physical characteristics of the wave propagation. We 
choose a quadrilateral mesh and the smallest wavelength minλ  must contain at least 10 spatial 

steps. Then the spatial and time steps ,∆ ∆x y  and ∆t  must verify the conditions: 

minmax( , )
10

x y λ
∆ ∆ ≺ , min( , )0,7

L

x yt
v
∆ ∆

∆ ≺ , (8)

where  is the smallest wavelength and  is the longitudinal wave velocity. minλ Lv
 

3.2. Generation of Lamb modes 
To generate the S0 or A0 Lamb modes, we apply on the left edge of the plate (x=0, y) the 

analytical displacements (equation 2), normalized by the power flow through the plate 
thickness (figure 4a, 4b). The spatial distribution of the displacements is applied during 10 
cycles tone burst (for t=0 to t=10/f) weighted by a Hanning window centered on the excitation 
frequency. The product frequency-thickness f.e varies from 0.1 to 2.2 MHzmm by a step of 
0.1 MHzmm. 
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Figure 4. Normalized displacements at 1.5 MHzmm applied to the left edge of the plate to 
generate S0 mode (a) and A0 mode (b) 

3.3. Dispersion curves 
For the S0 and A0 Lamb modes, and for the values of the frequency-thickness product 

varying from 0.1 to 2.2 MHzmm with a sampling step of 0.1 MHzmm, we pick up, on the 
upper face of the plate, the time evolution of displacements uy1(t) and uy2 (t) at two points M1 
and M2 located respectively at d1 = 50 mm and d2 = 100 mm. The Figure 5 presents these 
displacements at 1.5 MHzmm collected on the points M1 and M2 for the A0 Lamb mode. 

 

 

Figure 5. The out of plane displacements uy pick up on the upper face of the plate at 1.5 
MHzmm for the A0 mode at M1 (x=50 mm) (a) and M2 (x=150 mm) (b)  

 

To determine the dispersion curves of the excited modes, we apply the WT to these 
obtained displacements. Several mother wavelets (real and complex) are tested: Morlet, 
Gaussian, Meyer, DMeyer, Mexican_hat and Shannon. 

The figure 6 presents, in the case of the Gauss1 mother wavelet, the plots of wavelet 
coefficients of displacements at the points M1 and M2 at 1.5MHz.mm for the A0 mode. 
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Figure 6. Gauss1 wavelet coefficients of displacements: for the point M1 (x = 50 mm) (a) and 
for the point M2 (x = 150 mm) at 1.5 MHzmm forA0 Lamb mode in a steel plate  

 
Figures 7a and 7b present the “coefficient lines” in the case of Gauss1 mother wavelet for 

the scale a = 11 corresponding to the peak value of wavelet coefficients. Figure 7c and 7d 
show these “coefficient lines” in the case of Shan1-1.5 mother wavelet for the scale a = 59. 

 

 

Figure 7. “Coefficient lines” for the A0 mode in a steel plate at 1.5 MHzmm. Gauss1 wavelet: 
at M1 (x=50 mm) (a) and M2 (x=150 mm) (b) Shan1.1.5 wavelet: at M1 (x=50 mm) (c) and 

M2 (x=150 mm) (d) 

From peak values of the wavelet coefficients (figures 7a and 7b (7c and 7d)), we compute 
the arrival times td1 and td2 corresponding to the points M1 and M2 for the Gauss1 mother 
wavelet (Shan1.1.5 mother wavelet). The corresponding group velocities vg(f) are deduced 
according to equation (7). 
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The table 1 presents the obtained results for the various used mother wavelets. The relative 
errors on velocities are calculated in comparison to the exact velocities deduced from 
dispersion curves. The analysis of these results shows clearly that the Shannon (Shan1-1.5) 
complex mother wavelet gives the best values of the group velocity. This is certainly due to 
the fact that the mother wavelet Shan 1-1.5 is complex and it presents a maximum of 
resemblance to the Lamb signals. 

Figure 8 presents, for the Lamb modes S0 and A0, a superimposition of dispersion curves 
deduced from the Shannon wavelet analysis to analytic dispersion curves. The agreement 
between these curves is very good. 

 

Table 1. Group velocity values for the S0 and A0 Lamb modes, computed for various 
mother wavelets at 1 MHz.mm 

 Mode S0 Mode A0 

Wavelet td1 (µs) td2 (µs) 
Group 
velocity 

gv  (m/s)
Relative 

error td1 (µs) td2 (µs) 
Group 
velocity 

gv  (m/s) 
Relative 

error 

Morlet 41,25 60,3 5249,34 3,64% 45,8 77,1 3194,89 2,67% 
Gauss1 39,75 58,95 5208,33 2,83% 47,3 78,6 3194,89 2,67% 
Gauss2 41,25 60,45 5208,33 2,83% 45,8 77,1 3194,89 2,67% 
Gauss3 39,75 58,95 5208,33 2,83% 47,3 78,6 3194,89 2,67% 
Gauss4 41,25 60,45 5208,33 2,83% 45,8 77,1 3194,89 2,67% 
Meyr 43,5 62,7 5208,33 2,83% 48,2 79,5 3194,89 2,67% 
dmey 41,25 60,45 5208,33 2,83% 45,9 77,2 3194,89 2,67% 
mexh 41,25 60,45 5208,33 2,83% 45,8 77,1 3194,89 2,67% 

shan1-1.5 39,75 59,7 5012,53 -0,29% 46,4 78,5 3115,26 0,11% 
shan1-1 41,1 60,3 5208,33 2,83% 45,8 78,6 3048,78 -2,03% 

shan1-0.1 39,3 58,95 5089,06 0,47% 47,2 78,6 3184,71 2,34% 
shan2-3 39,75 60,3 4866,18 -3,93% 47,2 78,6 3184,71 2,34% 

shan1-0.5 39,45 59,4 5012,53 -1,04% 45,9 78,6 3058,10 -1,73% 
 

 

Figure 8. Dispersion curves: analytical (…) and calculated by shan1-1.5 WT (   ) for 
S0 (a) and A0 (b) Lamb mode 
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CONCLUSION 

We proposed in this paper a WT spectral analysis of Lamb modes in isotropic plates. The 
displacements predicted by FE modelling were processed by the WT. We determined by the 
WT the dispersion curves of S0 and A0 Lamb modes in steel plate without defects. Several 
mother wavelets were tested and we showed that the complex Shannon Shan1-1.5 mother 
wavelet gave the best values of group velocities. The presented application demonstrates the 
robustness of the WT processing and shows that the complex Shannon Shan1-1.5 mother 
wavelet is the most suitable for the WT analysis of Lamb modes signals. As a second 
application of the proposed WT processing method, we are currently working on the 
propagation of Lamb modes A0 and S0 in a plate with an internal defect. The complex mother 
wavelet Shan 1-1.5 is used for the post processing of the FEM predicted displacement field in 
order to compute the power coefficients of the reflected and the transmitted Lamb modes by 
the defect. 
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