Contents: 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001

2011, 14

I. Grushetsky

On coupling loss factors and excitation factor

language: Russian

received 15.11.2011, published 20.12.2011

Download article (PDF, 268 kb, ZIP), use browser command "Save Target As..."
To read this document you need Adobe Acrobat © Reader software, which is simple to use and available at no cost. Use version 4.0 or higher. You can download software from Adobe site (http://www.adobe.com/).

ABSTRACT

Derivation of coupling loss factors (CLF), which used in Statistical Energy Analysis, is presented. CLF between sound field in compartment and enclosure, concerned with excitation of enclosure by sound field, is usually defined from CLF between enclosure and sound field, concerned with radiation of enclosure into compartment, via reciprocity relation. It is suggested to define CLF between sound field and enclosure directly, using excitation factor (contrary to radiation factor). The way to define excitation factor from experimental data is presented. Preferences of this approach are discussed.

Key words: noise, vibration, Statistical Energy Analysis, coupling loss factors

9 pages, no figures

Сitation: I. Grushetsky. On coupling loss factors and excitation factor. Electronic Journal “Technical Acoustics”, http://www.ejta.org, 2011, 14.

REFERENCES

1. Никифоров А. С., Будрин С. В. Распространение и поглощение звуковой вибрации на судах. Л., Судостроение, 1968.
2. Бородицкий Л. С., Спиридонов В. М. Снижение структурного шума в судовых помещениях. Л., Судостроение, 1974.
3. Никифоров А. С. Вибропоглощение на судах. Изд. «Судостроение», Л., 1979.
4. Овсянников С. Н. Распространение звуковой вибрации в гражданских зданиях. Издательство Томского государственного архитектурно-строительного университета. Томск, 2000.
5. Maidanik G. Response of ribbed panels to reverberant acoustic fields. JASA, 1962, vol. 38, №6, pp. 809–826.
6. Oppenheimer C. H., S. Dubowsky. A radiation efficiency for unbuffled plates with experimental validation. JSV, 1997, v. 199, No 3, pp. 473–489.
7. Rumerman M. L. The effect of fluid loading on radiation efficiency. JASA, 2002, vol. 111, №1, part 1, 75–79.
8. Rumerman M. L. Estimation of broadband acoustic power radiated from a turbulent boundary layer-driven reinforced finite plate section due to rib and boundary forces. JASA, 2002, vol. 111, №3, 1274–1279.
9. Wang C., Lai J. C. S. The sound radiation efficiency of finite length circular cylindrical shells under mechanical excitation II: theoretical analysis. JSV 2000, 232(5) 431–447.
10. Wang C., Lai J. C. S. The sound radiation efficiency of finite length circular cylindrical shells under mechanical excitation II: limitations of the infinite length model. JSV 2001, 241(5) 825–838.
11. Anderson J. S., Bratos-Anderson M. Radiation efficiency of rectangular orthotropic plates. Acta Acoustica united with Acustica. Vol. 91 (2005) 61 – 76.
12. Frampton Kenneth D. Radiation efficiency of convected fluid-loaded plates. JASA, 2003, vol. 113, No 5, pp. 2663–2683.
13. Park J., Mongeau L., Siegmund T. Influence of support properties on the sound radiation from the vibrations of rectangular plates. JSV, 2003, 264, 4, p. 775–794.
14. Villot M., Guigou C., Gagliardini L. Predicting the acoustical radiation of finite size multi-layered structures by applying spatial windowing on infinite structures. JSV, 2001, v. 245, No 3, pp. 433–455.
15. Kollmann F. G., Landfester A. Sound radiation of smooth and ribbed rectangular plates. 7th International Congress on Sound and Vibration. Germany, 2000.
16. Gardner Bryce, Shorter Phil, Bremner Paul. An application of the resound mid-frequency method to structural-acoustic radiation. ICSV9, 2002, paper P580-4.
17. Arenas Jorge P., Crocker Malcolm J. Experimental results for the sound radiated from a panel using acoustic resistance and vibration cross-spectrum measurements. ICSV9, 2002, paper P110-1.
18. Грушецкий И. В., Гришин А. А. Измерение и использование в расчетах коэффициентов внутренних потерь корабельных конструкций. Труды ЦНИИ им. акад. А. Н. Крылова, 2008, 40(324), с. 152–171.

 

Igor Grushetsky , PhD, Krylov Shipbuilding Research Institute (St. Petersburg, Russia). Scientific area - noise and vibration computing, measurements and control

e-mail: editor(at)ejta.org