Contents: 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001

2021, 3

S. Voronkov

On the turbulence in a viscous gas

language: Russian

received 14.04.2021, published 18.05.2021

Download article (PDF, 756 kb)

Equations describing turbulence are given. A definition of turbulence in a viscous heat-conducting gas is given. The existence and smoothness of solutions of the Navier-Stokes equations are considered. It is noted that from the point of view of physics, when considering the existence and smoothness of solutions of the Navier-Stokes equations in a viscous heat-conducting gas, it is necessary to take into account the compressibility of the medium. It is shown that the discontinuous pressure behavior in a turbulent flow of a viscous heat-conducting gas follows not from the solutions of the Navier-Stokes equations in the approximation of the incompressibility of the medium, but from the solutions of a more general system of equations that take into account the compressibility and dissipation of energy: the Navier-Stokes equations, conservation of energy, continuity and state.

Keywords: turbulence, viscous heat-conducting gas, law of the emergence of turbulence, Navier-Stokes equation.

11 pages, 7 figures

Сitation: S. Voronkov. On the turbulence in a viscous gas. Electronic Journal “Technical Acoustics”, http://www.ejta.org, 2021, 3.

REFERENCES

1. Loytsyanskiy L.G. Mechanics of liquid and gas. Ed. 5th. – M.: Nauka, 1978. – 736 p.
2. Voronkov S.S. On the connection of Tollmien-Schlichting waves with acoustic waves. Scientific Journal "Noise Theory and Practice" Volume 6, No. 4 (IV, 2020). P.42-48. Access mode: http://www.noisetp.com/ru/issues/
3. Kachanov Yu.S., Kozlov V.V., Levchenko V.Ya. The emergence of turbulence in the boundary layer. - Novosibirsk: Nauka, 1982. - 151 p.
4. Voronkov S.S. On the law of turbulence in a viscous heat-conducting gas. Electronic journal "Technical Acoustics", http://www.ejta.org, 2016, 6.
5. Kochin N.E., Kibel I.A., Rose N.V. Theoretical hydromechanics. Part two. - M-L .: State. publishing house of technical and theoretical literature, 1948. - 612 p.
6. Voronkov S.S. On the speed of sound in a viscous gas flow with transverse shear. Electronic journal "Technical Acoustics", http://www.ejta.org, 2004, 5.
7. Fabrikant N.Ya. Aerodynamics. - M .: Nauka, 1964. - 814 p.
8. Voronkov S.S. On the modulus of elasticity of a viscous heat-conducting gas. Electronic journal "Technical Acoustics", http://www.ejta.org, 2010, 4.
9. Davidson P.A. Turbulence: an introduction for scientists and engineers. Oxford, UK: Oxford University Press, 2004. – 680 p.
10. Garbaruk A.V. Transition to turbulence. Lecture 2. - S-P.: SPbSPU, 2019. - 35 p. Access mode: https://cfd.spbstu.ru/agarbaruk/turb_models/Term8_Lec02_transition.pdf
11. Voronkov S.S. On the generation of Tollmien-Schlichting waves in the boundary layer of a viscous heat-conducting gas. Electronic journal "Technical Acoustics", http://www.ejta.org, 2018, 5.
12. Voronkov S.S. On the mechanism of vortex tube generation in the boundary layer of a viscous gas. Electronic journal "Technical Acoustics", http://www.ejta.org, 2020, 2.
13. Voronkov S.S. On the mechanism of the Emmons turbulent spots. Electronic journal "Technical Acoustics", http://www.ejta.org, 2020, 1.
14. Voronkov S.S. On the emergence and decay of coherent vortex structures in a viscous gas. Electronic journal "Technical Acoustics", http://www.ejta.org, 2021, 1.
15. Sayadi T., Hamman C.W., Moin P. Direct numerical simulation of H-type and K-type transition to turbulence. Center for Turbulence Research. Annual Research Briefs. 2011, p. 109-121. https://web.stanford.edu/group/ctr/ResBriefs/2011/10_sayadi-color.pdf
16. Existence and smoothness of solutions of the Navier-Stokes equations. - Wikipedia. https://ru.wikipedia.org/wiki/Существование_и_гладкость_решений_уравнений_Навье_—_Стокса
17. The Clay Mathematics Institute. https://claymath.org/
18. Ladyzhenskaya O.A. Mathematical problems in the dynamics of a viscous incompressible fluid. - 2nd ed. - Moscow: Nauka, 1970 .-- 288 p.
19. Temam R., Navier-Stokes Equations. Theory and numerical analysis. - M .: Mir, 1981 .-- 408 p.
20. Unsolved problems of modern physics. - Wikipedia. https://ru.wikipedia.org/wiki/Нерешённые_проблемы_современной_физики


 

Sergey S. Voronkov graduated from Leningrad Polytechnic Institute (Russia) in 1979, PhD. Presently he is docent at Pskov State University. Scientific area: hydrodynamics, nonlinear acoustics.

e-mail: voronkovss(at)yandex.ru