Содержание: 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 |2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001

2016, 3

Д. В. Макаров, Л. Е. Коньков

Угловая структура акустических импульсов в горизонтально-неоднородном подводном звуковом канале

язык: русский

получена 08.06.2016, опубликована 15.08.2016

Скачать статью (PDF, 282 кб, ZIP), используйте команду браузера "Сохранить объект как..."
Для чтения и распечатки статьи используйте «Adobe Acrobat© Reader» версии 4.0 или выше. Эта программа является бесплатной, ее можно получить на веб-сайте компании Adobe© (http://www.adobe.com/).

АННОТАЦИЯ

Рассматривается задача о дальнем распространении звука в глубоком океане. Представлен новый метод вычисления углового спектра импульсных сигналов. Метод основан на преобразовании Хусими и может быть реализован с помощью короткой вертикальной антенны, состоящей из ненаправленных гидрофонов. Получена диаграмма принимаемого сигнала в плоскости «время прихода - угол прихода». Метод применен для модели подводного звукового канала в Японском море. Отдельное внимание уделено рассеянию звука на холодном синоптическом вихре, расположенном вдоль трассы волновода. Показано, что синоптический вихрь приводит к расщеплению лучевых приходов на кластеры с близкими углами и временами прихода.

Ключевые слова: дальнее распространение звука, функция Хусими, синоптический вихрь, подводный звуковой канал.

8 страниц, 2 иллюстрации

Как сослаться на статью: Д. В. Макаров, Л. Е. Коньков. Угловая структура акустических импульсов в горизонтально-неоднородном подводном звуковом канале. Электронный журнал "Техническая акустика", http://ejta.org, 2016, 3.

ЛИТЕРАТУРА

1. Акуличев В.А. и др. Термометрия шельфовых зон океана акустическими методами // ДАН. 2006. Т. 409. № 4. С. 543-546.
2. Безответных В.В., Буренин А.В., Каменев С.И., Моргунов Ю.Н. Система звукоподводной связи с использованием сложных фазоманипулированных сигналов и обращения времени // Подводные исследования и робототехника. 2014. Т. 18. № 2. С. 58-63.
3. Азаров А.А., Голов А.А., Лебедев М.С., Моргунов Ю.Н. Методы акустической томографии в задачах подводной навигации // Подводные исследования и робототехника. 2012. Т. 13. № 1. С. 52-56.
4. Моргунов Ю.Н., Голов А.А., Лебедев М.С. Исследование влияния вариаций поля температур на точность измерения дистанций до подводных объектов // Акуст. Ж. 2014. Т. 60. № 1. С. 56-64.
5. Aulanier F., Nicolas B., Roux P., Mars J.I. Time-angle sensitivity kernels for sound-speed perturbations in a shallow ocean // J. Acoust. Soc. Am. 2013. V. 134. № 1. P. 88-96.
6. Захаров Л.Н., Ржевкин С.Н. Векторно-фазовые измерения в акустических полях // Акуст. Ж. 1974. Т. 20. № 3. С. 393-401.
7. Дзюба В.П. Скалярно-векторные методы в теоретической акустике. Владивосток: Дальнаука, 2006. 195 с.
8. Вировлянский А.Л., Макаров Д.В., Пранц С.В. Лучевой и волновой хаос в подводных акустических волноводах // УФН. 2012. Т. 182, № 1. С. 19-48.
9. Oregi I. and Arranz F.J. Distribution of zeros of the Husimi function in systems with degeneracy // Phys. Rev. E. 2014. V. 89. № 2. 022909.
10. Вировлянский А.Л., Окомелькова И.А. Лучевой подход для расчета сглаженного по угловым и пространственным масштабам локального спектра поля в волноводе // Изв. ВУЗ Радиофиз. 1997. Т. 40. № 12. С. 1542-1554.
11. Sundaram B., Zaslavsky G.M. Wave analysis of ray chaos in underwater acoustics // Chaos. 1999. V. 9. № 2. P. 483-492.
12. Virovlyansky A.L., Zaslavsky G.M. Evaluation of the smoothed interference pattern under conditions of ray chaos // Chaos. 2000. V. 10. № 1. P. 211-223.
13. Smirnov I.P., Virovlyansky A.L., Zaslavsky G.M. Wave chaos and mode--medium resonances at long-range sound propagation in the ocean // Chaos. 2004. V. 14. № 2. P. 317-332.
14. Smirnov I.P., Virovlyansky A.L., Edelman M., Zaslavsky G.M. Chaos-induced intensification of wave scattering // Phys. Rev. E. 2005. V. 72. № 2. 026206.
15. Kon'kov L.E., Makarov D.V., Sosedko E.V., Uleysky M.Yu. Recovery of ordered periodic orbits with increasing wavelength for sound propagation in a range-dependent waveguide // Phys. Rev. E. 2007. V. 76. № 5. 056212.
16. Makarov D.V., Kon'kov L.E., Uleysky M.Yu. Wave chaos in underwater acoustics // Журн. СФУ. Сер. Матем. и Физ. 2010. V. 3. № 3. С. 336-348.
17. Макаров Д.В., Коньков Л.Е., Петров П.С. Влияние океанических синоптических вихрей на длительность модовых акустических импульсов // Изв. ВУЗ Радиофиз. (принято в печать).
18. Makarov D.V., Kon'kov L.E., Uleysky M.Yu., Petrov P.S. Wave chaos in a randomly inhomogeneous waveguide: spectral analysis of the finite-range evolution operator // Phys. Rev. E. 2013. V. 87. № 1. 012911.
19. Вировлянский А.Л., Казарова А.Ю., Любавин Л.Я. О возможности использования вертикальной антенны для оценки задержек звуковых импульсов на тысячекилометровых трассах // Акуст. Ж. 2008. Т. 54. № 4. С. 565-574.
20. Вировлянский А.Л., Казарова А.Ю., Любавин Л.Я. Оценка искажений звукового поля при распространении через мезомасштабные неоднородности // Акуст. Ж. 2010. Т. 56. № 3. С. 352-363.
21. Godin O., Zavorotny V., Voronovich A., Concharov V.V. Refraction of sound in a horizontally inhomogeneous, time-dependent ocean // IEEE Journ. Ocean. Engin. 2006. V. 31. P. 384-401.
22. Океанография и состояние морской среды Дальневосточного региона России (руководитель проекта Ростов И. Д.), http://www.pacificinfo.ru.
23. Егорченков Р.А., Кравцов Ю.А. Описание дифракции супергауссовских пучков на основе комплексной геометрической оптики // Изв. ВУЗ Радиофиз. 2000. Т. 43. № 10. С. 888-894.


 

Денис Владимирович Макаров - д.ф.-м.н., ведущий научный сотрудник Тихоокеанского океанологического института им. В.И. Ильичева ДВО РАН. Научные интересы связаны с акустикой океана, квантовым и волновым хаосом, квантовой оптикой и конденсатами Бозе-Эйнштейна.

E-mail: makarov(at)poi.dvo.ru

 
 

Леонид Евгеньевич Коньков - научный сотрудник Тихоокеанского океанологического института им. В.И. Ильичева ДВО РАН, специалист по численному моделированию волновых и квантовых процессов в присутствие динамического хаоса.