Contents: 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001

2006, 15

I. L. Sheinman

Influence of gas bubbles on sound transmission of sonar dome

language: Russian

received 18.08.2006, published 28.09.2006

Download article (PDF, 340 kb, ZIP), use browser command "Save Target As..."
To read this document you need Adobe Acrobat © Reader software, which is simple to use and available at no cost. Use version 4.0 or higher. You can download software from Adobe site (http://www.adobe.com/).

ABSTRACT

An estimation of air bubbles influence on sonar dome insertion loss is an important problem of acoustic measurements in hydroacoustic tank. Air bubbles cover sonar dome surface and result to unpredictable strong effect on accuracy of measurement results. It takes some time before measurements after immersion of sonar dome and acoustical antenna in water to reduce number of bubbles. Long idle time leads to increasing of measurements cost. Influence of gas bubbles on sound transmission via sonar dome is considered in the paper. Bubbles affect sound transmission in two ways: by changing of surface impedance and by shielding of the active area of the dome.
The problem is solved by means of parameters definition of equivalent circuit of dome-bubbles system. Calculations of the sound transmission are carried out for different statistical laws of bubbles radiuses distribution and different concentration of bubbles. It is shown that shielding effect of bubbles is dominating for sound transmission.
Obtained results are also useful for the solution of an inverse task: for evaluation of concentration and bubbles radiuses distribution on the base of measured sound transmission coefficient through the sonar dome with and without bubbles.

16 pages, 12 figures

Сitation: I. L. Sheinman. Influence of gas bubbles on sound transmission of sonar dome. Electronic Journal “Technical Acoustics”, http://www.ejta.org, 2006, 15.

REFERENCES

1. Л. Д. Розенберг. Кавитационная область. В книге: Мощные ультразвуковые поля. Под ред. Розенберга, М.: Наука, 1968.
2. Л. Р. Гаврилов. Содержание свободного газа в жидкости и акустические методы его измерения. Акустический журнал, т. 15, вып. 3, 1969, с. 321-334.
3. О. А. Капустина. Дегазация жидкостей. В книге: Физические основы ультразвуковой технологии. Под ред. Л. Д. Розенберга, М.: Наука, 1970.
4. А. Е. Колесников. Акустические измерения, Л.: Судостроение, 1963.
5. Б. Ильин, О. К. Экнадиосянц. Влияние статического давления на фонтанирование жидкости под действием ультразвука. Акустический журнал, 16, вып. 4., с. 552, 1968.
6. Л. Ф. Лепендин, Акустика. М.: В.Ш., 1978.
7. Физические основы подводной акустики. Пер. с англ. Б. Г. Белкина, В. С. Григорьева, М. Л. Исаковича, М.: Советское радио, 1955.
8. Л. Р. Гаврилов. Содержание свободного газа в жидкостях и методы его измерения. В книге: Физические основы ультразвуковой технологии. Под ред. Л. Д. Розенберга, М.: Наука, 1970.


 

Ilya Sheinman graduated from Saint-Petersburg State Electrical Engineering University (Department of Electroacoustics and Ultrasonic Equipment, 1993) and Saint-Petersburg State University (Department of Mathematics and Computer Science, 1996). Ph.D. (in radio-physics) from Saint-Petersburg State Electrical Engineering University, 1997. Presently he is assistant professor at this University (Department of Physics). Scientific areas: electrodynamics of moving environments, particle accelerator physics, plasma physics, acoustic measurements, theoretical acoustics.
e-mail: isheinman(at)yandex.ru