**Contents**: 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001

Rayleigh waves in a rotating transversely isotropic materials

language: **English **

received 22.10.2006, published 07.02.2007

Download article **(PDF, 105 kb, ZIP)**, use browser command "Save Target As..."

To read this document you need Adobe Acrobat © Reader software, which is simple to use and available at no cost. Use version 4.0 or higher. You can download software from Adobe site (http://www.adobe.com/).

**ABSTRACT**

Rayleigh wave speed in a rotating transversely isotropic material is studied. Speed in some transversely isotropic materials is calculated by choosing an angular velocity. Rayleigh wave speed is also calculated in non-rotating medium. It is observed that rotational effect plays a significant role and increases the speed of Rayleigh waves.

6 pages

**Сitation:** A. Rehman, A. Khan, A. Ali. Rayleigh waves in a rotating transversely isotropic materials. Electronic Journal “Technical Acoustics”, http://www.ejta.org, 2007, 5.

**REFERENCES**

[1] P. Chadwick. Wave propagation in a transversely isotropic elastic material. I. Homogenous plane waves. Proc. R. Soc. Lond. A422, 23–66 (1989).

[2] F. Ahmad, A. Khan. Effect of rotation on wave propagation in a transversely isotropic elastic material. Mathematical Problems in Engineering Vol. 7, pp 147–154 (2001), Overseas Publishers Association, under Gordon and Breach Science Publishers.

[3] J. M. Carcione, D. Kosloff. Wave Propagation simulation in an elastic anisotropic (transversely isotropic) solid. Quarterly J. Mech. App. Math. 41, 319–345 (1988).

[4] Lord Rayleigh. On waves propagated along the plane surface of an elastic solid. Proc. R. Soc. Lond., A 17, 4–11 (1885).

[5] M. Rahman, J. R. Barber. Exact expressions for the roots of the secular equation for Rayleigh waves. ASME J. Appl. Mech., 62, 250–252 (1995).

[6] D. Nkemizi. A new formula for the velocity of Rayleigh waves. Wave Motion, 26, 199–205 (1997).

[7] D. Royer. A study of the secular equation for Rayleigh waves using the root locus method. Ultrasonics, 39, 223–225 (2001).

[8] P. C. Vinh, R. W. Ogden. On formulas for the Rayleigh wave speed. Wave Motion, 39, 191–197 (2004).

[9] C. T. Ting, A unified formalism for electrostatics or steady state motion of compressible or incompressible anisotropic elastic materials. Int. J. Solids Structures, 39, 5427–5445, (2002).

[10] M. Destrade. Rayleigh waves in symmetry planes of crystals: explicit secular equations and some explicit wave speeds. Mech. Materials, 35, 931–939 (2003).

[11] W. Ogden, P. C. Vinh. On Rayleigh waves in incompressible orthotropic elastic solids. J. Acoust. Soc. Am., 115, 530–533 (2004).

[12] M. Destrade, P. A. Martin, C. T. Ting. The incompressible limit in linear anisotropic elasticity, with applications to surface wave and electrostatics. J. Mech. Phys. Solid, 50, 1453–1468 (2002).

[13] P. C. Vinh, R. W. Ogden. Formulas for the Rayleigh wave speed in orthotropic elastic solids. Arch. Mech., 56 (3), 247–265, Warszawa, 2004.

[14] M. Schoenberg, D. Censor. Elastic waves in rotating media. Quarterly Appl. Math., 31, 115–125 (1973).

[15] W. H. Cowles, J. E. Thompson. Algebra, Van Nostrand, New York 1947.

[16] A. Rahman, F. Ahmad. Acoustic scattering by transversely isotropic cylinder. International Journal of Engineering Science, 38, 325–335 (2000).

e-mail: rehmanmath(at)yahoo.co.uk |
||

e-mail: aftabmath(at)hotmail.com |
||

e-mail: dr_asif_ali(at)yahoo.com |