Contents: 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 | 2002 | 2001
Dynamical chaos at propagation of finite amplitude waves in water
language: Russian
received 02.05.2006, published 05.06.2006
Download article (PDF, 570 kb, ZIP), use browser command "Save Target As..."
To read this document you need Adobe Acrobat © Reader software, which is simple to use and available at no cost. Use version 4.0 or higher. You can download software from Adobe site (http://www.adobe.com/).
ABSTRACT
The experimental study of propagation and interaction of finite amplitude acoustical waves in water is presented. The results are analyzed by traditional methods and by methods of nonlinear dynamics. The phase portraits of the system are reconstructed from the experimental data for the different conditions (values of control parameter), which are then compared with theoretical models. The numerical estimations of chaotic character of the system: correlation dimensions and Lyapunov spectrum are calculated.
9 pages, 10 figures
Сitation: I. Starchenko . Dynamical chaos at propagation of finite amplitude waves in water. Electronic Journal “Technical Acoustics”, http://www.ejta.org, 2006, 12.
REFERENCES
1. Новиков Б. К., Руденко О. В., Тимошенко В. И. Нелинейная гидроакустика. Л.: Судостроение, 1981. 264 с.
2. Руденко О. В., Солуян С. И. Теоретические основы нелинейной гидроакустики.
3. Зарембо Л. К., Тимошенко В. И. Нелинейная акустика. М.: Изд. МГУ, 1984. 104 с.
4. Ruelle D., Takens F. On the nature of turbulence. Commun. Math. Phys. 20, 1971, p. 167–192.
5. Takens F. Detecting strange attractors in turbulence. Dynamical Systems and Turbulence, edited by D. A. Rand and L.-S. Young. Springer, Berlin, 1981, pp. 366–381.
6. Mañé R. On the dimension of the compact invariant sets of certain nonlinear maps. Dynamical Systems and Turbulence, edited by D. A. Rand and L.-S. Young. Springer, Berlin, 1981, pp. 230–242.
7. Grassberger P. and Procaccia I. Measuring the Strangeness of Strange Attractors. Physica D 9, 1983, p. 189.
8. Кузнецов С. П. Динамический хаос (курс лекций). М.: Издательство Физико-математической литературы, 2001. 296 с.
9. Kantz H., Schreiber T. Nonlinear Time Series Analysis. Cambridge University Press, Cambridge, 1997.
10. NLyzer. http://www.physik.tu-darmstadt.de
11. Dataplore package. http://www.ixellence.com
Irene B. Starchenko - associate professor at Taganrog State University of Radio Engineering (Taganrog, Russia), PhD. Scientific area: nonlinear hydroacoustics, practical implementations of the dynamical chaos theory, medical information systems. e-mail: star(at)tsure.ru |